IceCube Event Reconstruction with Graph Neural Networks

IMPRS Colloquium 9 June 2021 Martin Ha Minh

Neutral-current / ve

Isolated energy deposition (cascade)

arXiv:1902.07771

10

Neutrino mass hierarchy

11

Charged-current v_µ

Neutral-current / ve

Up-going track

Quantities necessary for analysis:

- Neutrino direction
- Neutrino energy
- Interaction type (track vs data)

How do we get to those?

Isolated energy deposition (cascade)

Convolutional neural networks

CNNs often used for image processing

 \rightarrow Adaptation of IceCube detector

14

Caveats:

- Detector geometry gets changed for neural network
- Symmetric convolution kernel assumes symmetry and regularity
- Per-DOM (digital optical module) summary of pulse information omits already sparse information

Can we do without?

Convolutional neural networks

9 June 2021

Graph neural networks

Martin Ha Minh

$$H^{(l+1)} = \sigma \left(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)} \right)$$

Equation for a layer step

Example: GCNConv from arXiv:1609.02907v4

Graph neural networks

$$H^{(l+1)} = \sigma \Big(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)} \Big)$$

Graph neural networks

Martin Ha Minh

$$H^{(l+1)} = \sigma \left(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)} \right)$$

Connections are described in **adjacency matrix A**

Diagonal node degree **D** of A for normalization

$$\tilde{D}_{ii} = \sum_j \tilde{A}_{ij}$$

Edges

Graph neural networks

$$H^{(l+1)} = \sigma \left(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)} \right)$$

Message Passing

21

Convolutional kernel in CNNs

Graph neural networks

9 June 2021

$$H^{(l+1)} = \sigma \left(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)} \right)$$
 Trainable layer weights

Activation function

Various functions exist for message passing; see also in PyTorch Geometric

Graph neural networks

- Very similar in nature to CNNs
- Can represent information despite irregular configuration of problem
- Accepts variable input lengths
- **PyTorch Geometric** library has many GNN related layers and tools

Fast and flexible compared to traditional methods!

Graph neural networks

23

First intuition: Translate IceCube architecture into graph structure: **DOMs as nodes, spatial distance as edges**

What do with DOMs with **multiple pulses**? How to encode time differences?

 \rightarrow Pulse-based GNN

Events are graphs in abstract space with

x-, y-, z-positions, time, charge

of each registered pulse

 \rightarrow Uses complete pulse information

Network implicitly correlation between pulses

 \rightarrow Highly flexible, usable for current detector and IceCube Upgrade!

→ Apply on simulations and compare to baseline

Retro: Baseline reconstruction algorithm

Outperforming, especially in low-energy region!

26

Retro: Baseline reconstruction algorithm

Outperforming, especially in low-energy region!

- IceCube Upgrade in construction!
- New strings and modules present challenges
- Graph neural network already compatible

- IceCube neutrino oscillation physics can probe neutrino mass ordering and the unitarity of the PMNS matrix
- Development of **reconstruction and classification algorithm with GNNs** in full speed
- Can compete with traditional methods, but at **speeds magnitudes higher**

Outlook:

- Sensitivity studies, oscillation analysis with existing IceCube data
- Explore event selection possibilities
- IceCube Upgrade

Thanks for your attention!

Backup

nu tau appearance

Measuring **nu tau appearance** allows for probing the **unitarity of the PMNS matrix**:

9 June 2021

35