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Model of a saturon as a vacuum bubble

• Lets consider a theory of a scalar field ! in the adjoint representation of "# $ .
• !&' is a $×$ traceless Hermitian matrix with ), + = 1,… ,$.
• The Lagrangian density is given by

/ = 1
2 tr 34! 34! − 6 ! ,

with	potential

6 ! = )
2 tr @! − !A + C

$ tr !
A

A
,

where C is the unit $×$ matrix. 



Model of a saturon as a vacuum bubble

The vacuum equations

!"#$ − "& #
$ + (#

$

) *+"& = 0,
have many degenerate solutions. They correspond to the breaking

/0 ) → /0 ) − 2 ×/0 2 ×0 1

with 0 < 2 < ).
We consider the breaking with 2 = 1.



Model of a saturon as a vacuum bubble
Lets consider the ansatz

!"
# =

% &

' ' − 1
*+,- ' − 1 ,−1,… ,−1 .

The	potential	becomes

@ ! =
A
2
tr D! − !E +

G
'
tr !E

E

@ % =
HA
2
%E ID − % E



Model of a saturon as a vacuum bubble

! " = $%
2 "

' () − " '

where
$/ = 0 − 2 '

0 0 − 1
2→4 %
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(0 − 2)
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Model of a saturon as a vacuum bubble
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is	minimimized by
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Model of a saturon as a vacuum bubble
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Domain wall profile

! " = $%
& (1 + tanh

./
& )

0 = 12 $3 = 23
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Vaccum Bubbles
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Vaccum Bubbles Decay

! = 1
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Vaccum Bubbles Micro-states

Due to !" # → !" # − 1 ×" 1 SSB, the broken vacuum contains
#()*+ = 2 # − 1

massless Goldstone bosons Localized within the bubble.

These gapless Goldstone modes give rise to an exponential number of
bubble micro-states ./0, which scales as[1]

./0(2) ∼ 1 + 2#
6 2

/ 7
1 + 6 22#

89

[1]G. Dvali, Entropy Bound and Unitarity of Scattering Amplitudes, JHEP03(2021) 126, arXiv:2003.05546.



Vaccum Bubbles Micro-states

!"#(%) ∼ 1 + 2+
, %

" -
1 + , %2+

./

Here , % is the time-averaged space integral of 0.(1). 

For large bubbles (% ≫ 3), making use of the thin wall approximation, it is
given by

, % ≈ 47
3

%3 9

:
whereas for small (% ∼ 3;<) bubbles it scales as

,(%) ∼ 1
:



Vaccum Bubbles Stabilization

These micro-states, in their turn, contribute to the corresponding
micro-state entropy o6he bubble

! = ln %&' .
In [1] it was suggested that the high entropy of the bubble stabilizes it. 
That is, the occupied Goldstone modes prevent the bubble from
collapsing or spreading out. This is argued to occur due to the memory
burden effect [2,3].

[2] G. Dvali,A Microscopic Model of Holography: Survival by the Burden of Memory, arXiv:1810.02336. 
[3] G. Dvali, L. Eisemann, M. Michel, and S. Zell,Universe’s Primordial Quantum Memories, JCAP03 
(2019) 010, arXiv:1812.08749.
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Vaccum Bubbles Stabiliza/on

• Below we test this proposition and consider a classical analogue of
the memory burden effect where the Goldstone mode occupation
number is macroscopic.
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Vaccum Bubbles Stabilization

Lets consider the following ansatz

Φ"# =
% &
' ' − 1

*+,- ' − 1 ,−1,… ,−1 .

1"# = 23Φ2 "
#,

2 = exp[−+89:9]
and choose (for simplicity) 89= 8 <, & =9>



Vaccum Bubbles Stabilization

• The Lagrangian becomes

• We solve the field equa8ons considering the following ini8al 
condi8ons
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Vaccum Bubble 
Decay
"̇ = $

Stabilization
"̇ ≠ $
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Cri$cal Frecuency "̇#
• We observed in the numerical simulations that at a certain critical

frecuency we get the bubble to stabilice
• Bellow and above "̇#, the bubble oscilates respect to a smaller or

bigger radius, repectively, but does not decay during the simulated
time.
• We estimated "̇# using the thin wall approximation, for a bubble of

initial radius $%, to be
2 ( − 2
3( ( − 1

,
-$%



Conclusions and outlook

• We have shown and explicit classical ananlog of the memory burden
effect
• The macroscopic ocupation number of the Goldstone modes, 

parametrized by "̇, not only slows down the vaccum bubble decay as
it increases, but there is a critical frecuency "̇# at which the bubble
stabilizes.
• We are now cosidering frecuencies above and bellow "̇#, and studying

the bubble dynamics.
• What about small bubbles? In this case quantum effects become

important, reason why we need to include them in our analysis.



Thank you



Appendix



Vaccum bubble Decay

�

�

�

�



Vaccum bubble Decay
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