HLT Large Scale Tests 2006 and HLT Installation at Point1

At the LXBATCH facility at Cern/IT, farm size increasing throughout the testing period up to 1000 nodes

Goals

- Configure HLT infrastructure and algorithms, both Level 2 and Event Filter
- Exercise DB access for configuration, in particular
 - DB caching for the HLT
 - the TriggerDB

both new, essential ingredients

- Run HLT with a set of trigger slices and algorithms on a realistic mix of MC events
- Configure (emulated) ROD crates
 - with DBStressor developed for LST06
- Infrastructure timings, monitoring
 - detailed tests already performed in LST05
 - verify the good results in LST06

- November/December 2006
- dual cpu pentium IV2.4-2.8 GHz nodes; slc4
- inhomogeneous network
- dedicated MySQL servers
- Set up and maintained by IT

Databases involved at LST06

- Configuration using various databases with these options:
 - OKS to define the partition
 - DCS not used in the LST06
 - ◆ COOL (via CORAL): Oracle, MySQL, DbProxy, SQLite
 - ◆ Geometry (via CORAL): SQLite (because it is ~invariant)
 - TriggerDB (via CORAL): Oracle, MySQL, DbProxy; as well as job options
- On the local filesystem of each node we had:
 - ◆ The software (TDAQ-01-06-02, 12.0.3-LST, HLT-2-0-3)
 - SQLite, POOL, and BField files
- Oracle server: online cluster ATONR
 - **♦ 2 server nodes now upgraded to 6 nodes**
 - ◆ Located at IT, still on CERN public net soon on ATCN
 - Oracle is the primary database resource for real running (configuration, DCS, conditions) - was not yet the case in LST06
- MySQL servers:
 - ◆ 2 nodes installed on the LXSHARE cluster

Configuring the full system from DBs

Magnetic field file still unrealistic 5 MB.

26 Feb 2007 HLT Prepara

DB servers, file servers, and clients in LST

DB servers, file servers, and clients in LST

DB servers - ongoing development

Level 2 and Event Filter tests

Objectives:

- Run large DAQ partitions; Run with DbProxy, reading CondDB (COOL data)
- Study L2/EF with algorithms and CondDB configure times at various scales and SubFarm sizes and modes of DbProxy use
- Level 2:

12 SubFarms, up to 40 L2 Processing Units per SubFarm = 480 L2PUs, no Event Builder

- Algorithms configured from TriggerDB or jobOption files
- Transition time for each L2PU measured individually
- Geometry from SQLite DB file local on each node
- POOL files and B field map local on each node
- Conditions data from SQLite, MySQL, Oracle, or DbProxy

Configure

- ◆ L2 configuration times quite acceptable: ~1.5 min much faster than 2005
- Don't depend strongly on where configuration data come from: MySQL, Oracle, SQLite files, DbProxy cache
- Configure time is not dominated by DB access (which is ~15 sec)

Stop

- Many/most L2PUs stop within a few seconds
- "slow stoppers" of several min due to events with excessive time in HLT algos

Level 2 and Event Filter tests

- Event Filter
 measurements with various SubFarm configurations with 450 Event
 Filter Dataflow Tasks (EFD), and up to 1800 Processing Tasks (PT)
 - Focus on HLT-CondDB-DbProxy performance
 - Varying configuration sizes of EF trigger algorithm
 - Measure Conditions DB access time as part of configure transition
 - Algorithms configured from jobOption files
 - COOL data access directly or via SQLite, MySQL, DbProxy
 - Transition times for PTs measured individually

Scaling of total DB access times with size of EF System: 3, 8, 15 SubFarms of 30 nodes each, 2 and 4 PTs/node

- Configure
 - ◆ EF configuration time: ~2 min
 - Scalability exercise (2PT/CPU): > 6 mins with overloaded CPU
 - topology of farm layout will make a difference better at Point1

DbProxy

- Example of one DbProxy serving 20 nodes i.e. 40 L2PUs
- Each L2PU during configure makes 6 DB transactions i.e. 6 connects, 6 disconnects, plus the queries inbetween
- Upper histogram:

 absolute time of 1st connect
 and of last disconnect, one
 entry per node
 total span 17 seconds
- Lower histogram:
 time difference last
 disconnect minus 1st
 connect, one entry per node
 maximum duration 9 seconds

Conclusions and Outlook

LST06:

first time the DAQ/HLTsystem was run successfully with full configuration from databases, and at large scale

- Separate tests for LVL2 and for EF
- Configuration timing reasonable and apparently not dominated by database access
- A number of bugs found fixed "online" or immediately after the LST
- The complete DAQ/HLT system with ROS, LVL2, Event Builder and EF without algorithms was run on up to 600 nodes
 - Monitoring and Run Control timings OK
 - Need to work on Fault Tolerance throughout the system
 - Still improvements necessary in the area of Farm Tools, PartitionMaker
 - Operational Monitoring Tools to be put in place
- Thanks to IT for the valuable support
- A full report was given at the TDAQ open meeting 8. February 2007 for the slides see http://indico.cern.ch/conferenceDisplay.py?confld=11815
 The written report is being finalized on Twiki AtlasTDAQLargeScaleTests2006Report

Conclusions and Outlook (2)

- More complete tests foreseen on the hardware installed at Point1
 - With the adequate network structure within racks
 - Using the pre-series machines, and also new 8-core nodes
 - With all four trigger slices configured from TriggerDB
 - In LST one e-gamma slice from DB all slices only with jobOptions for Level2
 - Investigate details of trigger algorithm setup timing at configuration transition, esp. CPU intensive parts
 - Rack-specific configuration of CORAL to be integrated into a partition generation tool
 - DbProxy node name depends on rack had to use inelegant scripts in LST
 - Further tests at SLAC (DbProxy specific) and Manchester (trigger specific)

Status of DAQ/HLT Purchasing & Installation

- High Level Trigger nodes
 - 130 dual Quad-core machines, i.e. 8 cores in 1U
 - o DEL PowerEdge 1950
 - Clovertown 1.86GHz, 1Gig./core
 - Aim to complete installation & standalone commissioning by end March
 - Another HLT rack in process of being purchased
 - o Dual dual-core, i.e. 4 cores
 - WoodCrest 3.0GHz, 1Gig./core
 - o Expected around end March
 - □ For 2008 running
 - o At least 30 Racks
 - o Aim to start receiving machines in Feb. '08
 - Start purchasing procedure ~ Aug. '07
 - o Complete installation ~May
 - Including standalone commissioning
 - Ongoing deliveries used to define procedures & update time required

David Francis
TDAQ General Meeting 8 Feb

Conclusions and Outlook: Caching

- HLT configuration via DBProxy caches was a success
 - We have a proven way to scale from one to many HLT racks
 - SLAC group now working on a direct DbProxy to Oracle connection
 - DbProxy used for data varying for each run: conditions + TriggerDB
 - Geometry and magnetic field map are taken from files
- At node level, caching could be done as well, but...
 We have nodes with 2*4 cores each already today more cores to come
 - need to optimise memory consumption and initialisation effort options:
 - global (initialization) thread + multiple event threads share constant data (geometry, fieldmap)
 - initialization process + multiple event processes could shared memory for constant data
 - using shared memory segment
 - fork() and utilize copy-on-write
 - options for sharing are now studied in Athena architecture team, for L2, EF, and possibly T0
 - Athena object store (StoreGate), if in shared memory, could be loaded with ready-made object data from a file in one go to save a lot of initialization time (but vtab...)

Overview online & offline database connections

Two major components of HLT configuration data

HLT Trigger Menu

- Defines the list of our physics triggers Hierarchy of Chains, Signatures (steps), and TriggerElements.
- Configures the HLTSteering navigates the ROIs through TEs

HLT Job Parameters

- Defines physics selections thresholds, etc., conditions (POOL references), ...
- Configures all algorithms, services, and tools

Chain X

Chain Egamma EF

Joerg Stelzer

LVL 1 also configured from TriggerDB but not tested during LST

HLT Algorithm

Trigger information flow

Trigger & Data Acquisition - characteristics and acronyms

Next Software & Computing Workshop

