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Introduction

• The Standard Model of Particle 
Physics (SM) describes the 
observed universe with a 
reasonable set of particles

• But: It is incomplete
• Dark matter

• Matter-Antimatter asymmetry 
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Two Flavour Physics Topics

Lepton flavour universality:

• The coupling of gauge bosons 
independent of the lepton flavour

• 𝑅𝐾 =
ℬ 𝐵+→𝐾+𝜇+𝜇−

ℬ 𝐵+→𝐾+𝑒+𝑒−
= 1

CP violation:

• In the SM, CP violation arises via a 
complex phase in the CKM matrix
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SuperKEKB

• Asymmetric electron-positron collider 

• Centre of mass energy: 10.58 GeV

→Y(4S) resonance 

Aim:

• Instantaneous luminosity: 6 ⋅ 1035cm−2s−1

• Integrated luminosity: 50 ab−1

• Biggest dataset used in analysis: 34.6 fb−1
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Belle II Detector
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Particle Identification

• Likelihood calculated 
independently for each 
subdetector and hypotheses

ℒ𝑖 =ෑ

det

ℒ𝑖
det

• Particle Identification 
probability:

𝑃𝑖 =
ℒ𝑖

σ𝑗 ℒ𝑗
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Particle Identification
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Analysis Particle Identification Efficiency

• Use Bhabha events in a tag and 
probe approach to measure 
efficiency of electron 
identification (eID)

• Advantages of Bhabha events:
• High cross section

• Cover wide momentum range

• Clear event signature
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Result
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• Simple selection
• Corrections for background
• Calculate systematic uncertainties



Measurement of sin(2𝜙1) and Δ𝑚𝐷
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TDCPV Measurement

• Determine sin 2𝜙1 via 
measurement of the asymmetry 
between the number of 𝐵0and ത𝐵0

decays into the CP-eigenstate 
𝐽/𝜓𝐾𝑆

0 as a function of the decay 
time

• World average (PDG): 
sin 2𝜙1 = 0.699 ± 0.017

• Aim of Belle II: Increase precision 
to ≈ 0.5%
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Time Dependent CP Violation at Belle II
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General Principle of the Analysis

• The distribution for positive (negative) flavour events as a function of Δt follows:

𝑁± Δ𝑡 = 𝑁 ⋅
exp −Δ𝑡/𝜏

4𝜏
1 ± 1 − 2𝑤 𝑆𝑓 sin Δ𝑚𝐷Δ𝑡

• Goal: Extract 𝑆𝑓 ≈ sin(2𝜙1)

• Lifetime 𝜏 and mixing frequency Δ𝑚𝐷 are set to PDG values

• Wrong tag fraction 𝑤 needs to be determined

• Estimate background
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Background

• Loose and simple selection to 
supress background (backup)

• Fit to 𝑀𝑏𝑐 distribution to 
determine remaining background 
fraction

• 𝑀𝑏𝑐 = 𝐸𝑏𝑒𝑎𝑚
2 − 𝑝𝐵

2

• Signal Events peak at the B mass 

• Shapes extracted from 500 fb−1

simulation sample
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Determining wrong tag fraction 𝑤
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Mixing Fit

• Fit to events with a flavour specific decay

• Classify events into two categories where the 𝐵sig
0 and 𝐵tag

0 have the 
same flavour (SF) or the opposite flavour (OF)

𝑁SF/OF Δ𝑡 = 𝑁SF/OF ⋅
exp −Δ𝑡/𝜏

4𝜏
1 ± 1 − 2𝑤 cos Δ𝑚𝐷Δ𝑡

→Fit to 𝐵0 → 𝐷−(𝐾+𝜋−𝜋−)𝜋+ (most abundant)
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• Left: 𝑤 = 0 and Δ𝑡 from simulation

• Middle: 𝑤 ≠ 0 and Δ𝑡 from simulation

• Right: 𝑤 ≠ 0 and Δ𝑡 is measured quantity 

→ NSF/OF Δt → (NSF/OF ∗ ℛ) Δt
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Detector and Reconstruction Effects



Mixing Fit
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• Wrong tag fraction:

𝑤 = (20.9 ± 2.1)% 

• Simulation: 20.0 %

• Δ𝑚𝑑 =

(0.531 ± 0.046 (stat.) ± 0.013 (syst.)) ps−1

• PDG: (0.5065 ± 0.0019) ps−1



Combined Fit Strategy

• The parameter 𝑆𝑓 is extracted using an extended unbinned maximum 
likelihood fit simultaneous to six datasets: 

• 1,2 𝐵0 → 𝐷−𝜋+ same flavour and opposite flavour 

• 3,4 𝐵0 → 𝐽/𝜓 𝜇𝜇 𝐾𝑆 with a 𝐵0 and ത𝐵0 tag

• 5,6 𝐵0 → 𝐽/𝜓 𝑒𝑒 𝐾𝑆 with a 𝐵0 and ത𝐵0 tag

• Free shape parameters for TDCPV fit: 
𝑆𝑓 , 𝑤, 𝜎smear, µshift, 𝑀𝑏𝑐;shift

• With this method, stat errors on 𝑤 and bkg fraction are propagated 
automatically to the physics parameters by the fit.
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Result: Time Dependent CP Violation
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• 𝑆𝑓= 0.55 ±0.21 (stat.) ±0.04 (syst.)

• PDG: 0.699 ± 0.017



Summary and Outlook

• Obtained values agree well with PDG

• Belle II sees hint of Time Dependent CP Violation with 2.71𝜎

• 𝑤 = (20.9 ± 2.1)% (Simulation: 20.0 %)

• Next step: Improve background treatment, resolution function , fitting… 

→ Transform measurement into precision measurement

• Electron ID efficiency is generally above 90%

• Distribution is well understood

• Next steps: More sophisticated treatment of uncertainties, modify study if 
data acquisition/trigger (HLT) setup changes
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Backup
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LID: Analysis Procedure

• Simple event selection, tight tag 
requirement

• Compute efficiency in bins of 𝜃 and 𝑝

• Efficiency: 𝜖 =
𝑝probe⋅𝑁probe

𝑝tag⋅𝑁tag

• Three different data samples 
corresponding to different data taking 
periods and two different simulation 
samples to evaluate performance of eID
over time
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Event selection

|dz| < 5 cm & |dr| < 2 cm

Number of tracks = 2

m2Recoil < 10 GeV

Low multiplicity trigger + emulation 

Tag selection: eID > 0.95

Probe selection: eID > 0.90



LID: Systematics

• Calculate efficiency with and 
without purity factors

• Calculate efficiency with and 
without trigger emulation using 
simulation samples

→ Absolute difference as 
uncertainty
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LID: Result
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LID: dE/dx

• dE/dx for:
• Electrons

• Muons

• Pions

• Kaons

• Protons
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TDCPV: Background
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TDCPV: Systematics
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• Left: 𝑤 = 0 and Δ𝑡 from simulation

• Middle: 𝑤 ≠ 0 and Δ𝑡 from simulation

• Right: 𝑤 ≠ 0 and Δ𝑡 is measured quantity → N± Δt → (N± ∗ ℛ) Δt
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B0 → J/ψKs Shape


