Characterization of the Particle Identification of the Belle II Detector and Measurement of $sin(2\phi_1)$ and Δm_d

Justin Skorupa

2020.03.29

Outline

- Introduction
- Two Topics of Flavour Physics
- SuperKEKB and Belle II Detector
- Particle Identification Algorithm
- Particle Identification Analysis
- Measurement of $\sin(2\phi_1)$ and Δm_d
- Conclusion and Outlook

Introduction

- The Standard Model of Particle Physics (SM) describes the observed universe with a reasonable set of particles
- But: It is incomplete
 - Dark matter
 - Matter-Antimatter asymmetry

Two Flavour Physics Topics

Lepton flavour universality:

• The coupling of gauge bosons independent of the lepton flavour

•
$$R_K = \frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ e^+ e^-)} = 1$$

CP violation:

• In the SM, CP violation arises via a complex phase in the CKM matrix

- Asymmetric electron-positron collider
- Centre of mass energy: 10.58 GeV
- \rightarrow Y(4S) resonance

Aim:

- Instantaneous luminosity: $6 \cdot 10^{35} \text{cm}^{-2} \text{s}^{-1}$
- Integrated luminosity: 50 ab^{-1}
- Biggest dataset used in analysis: 34.6 fb⁻¹

Belle II Detector

Particle Identification

 Likelihood calculated independently for each subdetector and hypotheses

$$\mathcal{L}_i = \prod_{\det} \mathcal{L}_i^{\det}$$

 Particle Identification probability:

$$P_i = \frac{\mathcal{L}_i}{\sum_j \mathcal{L}_j}$$

Particle Identification

Analysis Particle Identification Efficiency

- Use Bhabha events in a tag and probe approach to measure efficiency of electron identification (eID)
- Advantages of Bhabha events:
 - High cross section
 - Cover wide momentum range
 - Clear event signature

Result

- Simple selection
- Corrections for background
- Calculate systematic uncertainties

Measurement of $sin(2\phi_1)$ and Δm_D

TDCPV Measurement

- Determine $sin(2\phi_1)$ via measurement of the asymmetry between the number of B^0 and \overline{B}^0 decays into the CP-eigenstate $J/\psi K_S^0$ as a function of the decay time
- World average (PDG): $\sin(2\phi_1) = 0.699 \pm 0.017$
- Aim of Belle II: Increase precision to $\approx 0.5\%$

Time Dependent CP Violation at Belle II

General Principle of the Analysis

• The distribution for positive (negative) flavour events as a function of Δt follows:

$$N_{\pm}(\Delta t) = N \cdot \frac{\exp(-\Delta t/\tau)}{4\tau} \left[1 \pm (1 - 2w)S_{f} \sin(\Delta m_{D}\Delta t)\right]$$

- Goal: Extract $S_f \approx \sin(2\phi_1)$
- Lifetime τ and mixing frequency Δm_D are set to PDG values
- Wrong tag fraction *w* needs to be determined
- Estimate background

Background

- Loose and simple selection to supress background (backup)
- Fit to M_{bc} distribution to determine remaining background fraction

•
$$M_{bc} = \sqrt{E_{beam}^2 - p_B^2}$$

- Signal Events peak at the B mass
- Shapes extracted from 500 fb⁻¹ simulation sample

Determining wrong tag fraction w

Mixing Fit

- Fit to events with a flavour specific decay
- Classify events into two categories where the B_{sig}^0 and B_{tag}^0 have the same flavour (SF) or the opposite flavour (OF)

$$N_{\rm SF/OF}(\Delta t) = N_{\rm SF/OF} \cdot \frac{\exp(-\Delta t/\tau)}{4\tau} \left[1 \pm (1 - 2w)\cos(\Delta m_D \Delta t)\right]$$

 \rightarrow Fit to $B^0 \rightarrow D^-(K^+\pi^-\pi^-)\pi^+$ (most abundant)

Detector and Reconstruction Effects

- Left: w = 0 and Δt from simulation
- Middle: $w \neq 0$ and Δt from simulation
- Right: $w \neq 0$ and Δt is measured quantity
- $\rightarrow N_{SF/OF}(\Delta t) \rightarrow (N_{SF/OF} * \mathcal{R})(\Delta t)$

Mixing Fit

• Wrong tag fraction:

 $w = (20.9 \pm 2.1)\%$

- Simulation: 20.0 %
- $\Delta m_d =$

 $(0.531 \pm 0.046 \text{ (stat.)} \pm 0.013 \text{ (syst.)}) \text{ ps}^{-1}$

• PDG: (0.5065 \pm 0.0019) ps⁻¹

Combined Fit Strategy

- The parameter S_f is extracted using an extended unbinned maximum likelihood fit simultaneous to six datasets:
- 1,2 $B^0 \rightarrow D^- \pi^+$ same flavour and opposite flavour
- 3,4 $B^0 \rightarrow J/\psi(\mu\mu)K_S$ with a B^0 and \overline{B}^0 tag
- 5,6 $B^0 \rightarrow J/\psi(ee)K_S$ with a B^0 and \overline{B}^0 tag
- Free shape parameters for TDCPV fit:

 S_f , w, σ_{smear} , μ_{shift} , $M_{bc;\text{shift}}$

• With this method, stat errors on w and bkg fraction are propagated automatically to the physics parameters by the fit.

Result: Time Dependent CP Violation

- $S_f = 0.55 \pm 0.21$ (stat.) ± 0.04 (syst.)
- PDG: 0.699 ± 0.017

Summary and Outlook

- Obtained values agree well with PDG
- Belle II sees hint of Time Dependent CP Violation with 2.71 σ
- w = (20.9 ± 2.1)% (Simulation: 20.0 %)
- Next step: Improve background treatment, resolution function, fitting...
- \rightarrow Transform measurement into precision measurement
- Electron ID efficiency is generally above 90%
- Distribution is well understood
- Next steps: More sophisticated treatment of uncertainties, modify study if data acquisition/trigger (HLT) setup changes

Backup

LID: Analysis Procedure

- Simple event selection, tight tag requirement
- Compute efficiency in bins of θ and p
- Efficiency: $\epsilon = \frac{p_{\text{probe}} \cdot N_{\text{probe}}}{p_{\text{tag}} \cdot N_{\text{tag}}}$
- Three different data samples corresponding to different data taking periods and two different simulation samples to evaluate performance of eID over time

Event selection
dz < 5 cm & dr < 2 cm
Number of tracks = 2
m2Recoil < 10 GeV
Low multiplicity trigger + emulation
Tag selection: eID > 0.95
Probe selection: $eID > 0.90$

LID: Systematics

- Calculate efficiency with and without purity factors
- Calculate efficiency with and without trigger emulation using simulation samples
- \rightarrow Absolute difference as uncertainty

LID: Result

LID: dE/dx

- dE/dx for:
 - Electrons
 - Muons
 - Pions
 - Kaons
 - Protons

TDCPV: Background

all channels		
qr	>	0.2
R_2	<	0.4
$\Delta t_{\rm err}$	>	$0.1 \ ps$
	<	$6.0 \ ps$
p-val (tag)	>	1%
p-val(sig)	>	-1
$m_{\rm bc}$	\in	(5.2, 5.3) GeV

$\mathrm{B}^{0} \rightarrow \mathrm{J}/\psi(\rightarrow \ell\ell)\mathrm{K}_{\mathrm{S}}$			$\mathrm{B}^{0} ightarrow \mathrm{D}\pi$		
$m_{\mu \rightarrow \pi}(\ell \ell)$	>	3.05 GeV	$ \Delta E $	<	0.05 GeV
$m_{\mu^{\pm}\rightarrow\pi^{\pm}}(K_{S}\ell^{\pm})$	∉	(1.85, 1.89) GeV	m(D)	\in	(1.844, 1.894) GeV
$m(\pi\pi)$	\in	(0.47, 0.53) GeV	$ID_K(\pi_B)$	<	0.5
$dr(K_S)$	>	$0.6~\mathrm{cm}$	$ID_K(K)$	>	0.4
$B^0 \rightarrow J/\psi(\rightarrow \mu^+\mu^-)K_S$			-		
$ \Delta E $	<	0.05 GeV	-		
$m(\mu\mu)$	\in	(3.00, 3.15) GeV			
$ID_{\mu}(\mu^{+}) \text{ or } ID_{\mu}(\mu^{-})$	>	0.2			
$B^0 \rightarrow J/\psi (\rightarrow e^+e^-)K_S$					
$ \Delta E_{\rm ctr} $	<	0.04 GeV			
m(ee)	\in	(2.90, 3.15) GeV			
$ID_e(e^+)$ or $ID_e(e^-)$	>	0.2			

TDCPV: Systematics

Source	$\Delta m_d \ [\%]$	S_f [%]
Background scale and shift	-0.2	-0.3
Peaking Background $B^0 \rightarrow J/\psi K_S \pm 100\%$	-	-2.7
$B\overline{B}$ fraction $\pm 50\%$ in $B^0 \to D\pi$	0.03	-2.1
$\Delta m_{\rm eff}$ for $B\overline{B}$ free	0.8	0.4
w_{eff} for $B\overline{B}$ free	-0.15	4.9
w difference between $B^0 \to J/\psi K_S$ and $B^0 \to D\pi$	-	2.9
Resolution function tail scale	1.2	0.6
Resolution function tail fraction $\pm 50\%$	1.4	0.4
Kinematic approximation $w, \Delta m_d$	1.2	0.0
Kinematic approximation S_f	-	-0.9
VXD misalignment	0.4	2.0
total	2.4	7.1

- Left: w = 0 and Δt from simulation
- Middle: $w \neq 0$ and Δt from simulation
- Right: $w \neq 0$ and Δt is measured quantity $\rightarrow N_{\pm}(\Delta t) \rightarrow (N_{\pm} * \mathcal{R})(\Delta t)$