Development of Precision Drift Tube Detectors for High Counting Rates at the Super-LHC

J. Dubbert¹, S. Horvat¹, H. Kroha¹, <u>F. Legger¹</u>, O. Kortner¹, R. Richter¹, F. Rauscher²

¹Max-Planck-Institut f. Physik, Munich, Germany ²Ludwig-Maximilians University, Munich, Germany

Atlas meeting, MPI Munich

Outline

- The luminosity upgrade of the LHC
 - the Super-LHC
- Background rates at the Super-LHC
 - motivation for <u>smaller radius drift tubes</u> for the ATLAS MDT chambers
- Smaller radius drift tubes:
 - Design issues
 - End plug design
 - First cosmic-ray tests and comparison with simulation

• Conclusions and Outlook

LHC upgrade: the Super LHC

LHC short term schedule:

- Beam commissioning at 7 TeV planned for May 2008
- Initial physics run in summer 2008
- Depending on how the machine goes, collect 10 fb⁻¹/exp at 2·10³³ cm⁻²s⁻¹ luminosity by the end of 2009

LHC upgrade schedule:

- **2009-2015:** a stretching of the machine parameters up to their limits will lead to a luminosity increase of about a factor **2.3**
- 2015: upgrade of the interaction regions, leading to stronger focussing (luminosity x2)
- Later injector upgrade: increase in the bunch number, and finally increase of the center of mass energy by a factor of 2 (luminosity x10)

(assuming stable running conditions and nominal luminosity will be reached 2-3 years after LHC startup)

Up to 10x higher background rates at the S-LHC!

Radiation levels at the LHC

• Background rates including a safety factor 5 [Hz/cm²] in the ATLAS Muon spectrometer for n- γ at L = 10³⁴ cm⁻² s⁻¹ (LHC nominal luminosity)

11/26/2007

The ATLAS MDT Chambers at the S-LHC

- At high background rates:
 - Muon detection efficiency degradation because of high occupancy

 Degradation of the spatial resolution due to space charge fluctuations

Efficiency degradation at high rates

- Efficiency degradation critical at high rates because of high occupancy:
 - With 15 mm diameter tubes, the occupancy can be decreased by a factor 3.5
 - Occupancy per tube reduced by an additional factor 2 due to smaller wall surface
 - Occupancy of 30% up to 1500 kHz/tube!

Occupancies and number of muon hits

• Acceptable occupancies $\lesssim 10\%$ up to the highest rates.

• Average number of muon hits in a chamber: \geq 7.

Reconstruction efficiency and resolution

Single-tube resolution

⇒ Superpoint resolution 140 μ m/ $\sqrt{7}$ =53 μ m. Simulation: 8 layer chamber with 15 mm diameter and 80 cm long tubes (Oliver Kortner)

Space charge considerations

Degradation of the spatial resolution due to **space charge fluctuations**, • not a critical issue: gas is linear

- Gas gain drop (at x10 LHC rates): 15% •
- Change of operating voltage due to gain drop: ۲
 - Proportional to (drift radius)³ -> with 15 mm diameter tubes, operating limit is 40 kHz/cm²

Design of chambers with smaller tube diameter

Baseline:

- Tubes with 15 mm diameter
- Chambers with 2 x 8 layers
- Aluminium tube walls (0.4 mm thick)
- Tungsten-rhenium wire of 50 μm diameter
- Gas mixture: Ar:CO₂ (93:7) at 3 bars
- Gas gain: 20,000
- Same electric field as in the current tubes for r < 7.5 mm
 - Operating voltage: 2760 V

Diameter	30 mm	15 mm
gas	Ar:CO2	Ar:CO2
	(93:7)	(93:7)
pressure	3 bar	3 bar
Wire	50 μm W-Re	50 µm W-Re
Tube wall	0.4 mm Al	0.4 mm Al
Operating voltage	3080 V	2760 V
Max drift time	700 ns	200 ns
Occ.@1500 kHz/tube	100%	30%
Operating limit due to space charge	5 kHz/cm ²	40 kHz/cm ²

Design issues

4 times more tubes can be packed in the same space, however very limited space available for gas and electronics connection

End-plug design

Cosmic-ray test setup

Cosmic-ray tests: drift time spectrum

- Experimental max drift time: 180 ns
- Simulated max drift time: 177 ns

Cosmic-ray tests: results

- r-t relationship linear
- Very high single tube efficiency

Good agreement with simulation

Outlook

- ATLAS MDT chambers will suffer from a huge radiation background at the Super-LHC (up to 5 kHz/cm²)
- New chambers with 15 mmdiameter tubes will have ~10x higher operating limit
- First simulations and cosmic-ray tests show expected behaviour
- High rate tests in the Gamma Irradiation facility (GIF) at CERN are planned for Jan-Feb 2008
- Fully equipped prototype chamber planned for **2008**

Chamber design

Spare slides

The ATLAS experiment at the LHC

The ATLAS Monitored Drift-Tube chambers

Drift tube chambers:

- 2 x 4 layers
- Mechanical precision < 20 μ m
- Length: 1-6 m

Chamber readout:

- 24 tubes connected to a shielded passive readout card
- Discriminator threshold set to 16th p.e.
- Adjustable dead time: 790 ns, to avoid hits coming from multiple threshold crossings

Chamber performances:

- Resolution: ~80 μ m
- Tracking efficiency: 90-95%

Chamber operating limits:

- gain drop: 5 kHz/cm²
- high occupancy (> 50%): 700 kHz/tube

High Voltage tests

HVDC	endcap	+endplug	+tube
in Volt	in nA	in nA	in nA
100	0	0	0
500	0	0	0
1000	0	0	0
1500	0	0	0
2000	0	0	0
2500	0	0	2
3000	0	1	3
3500	0	1	2
4000	1	2	2
4500	1	3	2
5000	2	3	5
5500	2	11	23

Efficiency degradation at high rates

Results from test-beam measurements

- Trade-off between efficiency and fake rate.
- Segment reconstruction efficiencies >90% are achievable for LHC background rates.

Drift-tube chambers well performant up to occupancies of 30%.

Space charge limitations

Gas gain drop at 1 kHz/cm² ("10×ATLAS"): 15%, acceptable.
Change of the operating voltage due space charge:

$$\Delta U = \frac{R^3 q \ln \frac{R}{R_a}}{4\pi\epsilon_0 \mu U_0} \times flux(\mathrm{cm}^{-2}\mathrm{s}^{-1})$$

R=15 mm, R_a =25 μ m, μ =0.5 cm²/(Vs),

 $q = 20,000.32 \text{ keV}/25 \text{ eV}.\text{e}, U_0 = 3080 \text{ V}.$

- $\Rightarrow \Delta U = 250 \text{ V at } 5 \text{ kHz/cm}^2 \rightarrow \text{no signal!}$
- \Rightarrow R = 7.5 mm: higher limit: 40 kHz/cm².

\Rightarrow Occupancy, not space-charge defines operating limit!

- Other issues:
 - Larger readout bandwidth needed
 - Aging
 - Radiation damage to electronics and power supplies