# Online Data Reduction for the Pixel Detector at the Belle II Experiment

#### Claudio Heller Max-Planck-Institut für Physik, Munich



Outline

Physics Motivation
Belle 2 Experiment
Pixel Vertex Detector
Data Reduction
Results

#### **CP** Violation

- CP symmetry is violated in weak decays
- non-vanishing complex phase in the weak mixing matrix (CKM matrix)
- B-physics: large CP violation in B system



#### Precision Measurment of CP violation

- verification of the CKM model (Nobel Price 2008 for Kobayashi and Maskawa)
- CPV in the Standard Model is not enough to describe the matter-antimatter asymmetry in the universe
- search for new sources of CP violation  $\Rightarrow$  new physics  $\downarrow$

Claudio Heller, IMPRS Workshop, 3rd of May 2010

high energy (LHC)

high precision at low energy ("Bfactor")

#### Measurement of CP Violation

measurement of differences between matter and antimatter decays

- production of  $\overline{BB}$  pairs
- one B to determine the flavor, the other B for CP measurement
- boost of the system due to asymmetric beam energies
- measure  $\Delta z$  by determination of the decay vertices of the B mesons



 $\Delta t \approx 1.5 \text{ ps}$ 

# SuperKEKB / Belle II

- Upgrade of KEKB collider ("B-factory") and the Belle Experiment at KEK in Tsukuba, Japan (start 2014)
- B-factory: asymmetric electron-positron-collider running at a center of mass energy of around 10.58 GeV
   Y(4S) Resonance
- SuperKEKB: 7 GeV  $e^-$  & 4 GeV  $e^+$

nano beam scheme: vertical beamsize 60 nm

 Design Luminosity 8 x 10<sup>35</sup> cm<sup>-2</sup> s<sup>-1</sup> (40 x KEKB)



## The Belle II Detector

- Calorimeter
- Particle Identification
- Central Drift Chamber
- Silicon Vertex Detector
- Pixel Vertex Detector



## Pixel Vertex Detector (PXD)

- close to the interaction region high occupancy at SuperKEKB
   no strip detector possible need pixel detector
- low momentum 🔶 thin silicon (low multiple scattering)

- 2 layers of silicon modules (radii 14 mm, 22 mm)
- 20 modules with 400 000 Depfet pixels each
- Depfet: Depleted p-channel Field Effect Transistor
- row-wise readout from both ends

# Why Data Reduction?

- High background environment: machine background, QED (Bhabha, 2-Photon)  $\implies$  expected occupancy O(1%)
- Readout time 20 µs (1 event: 5000 tracks from background, only 10 physics tracks)
- Expected data rate: 1 MB / Event 🖤 25 GB / s



- Amount of data created by PXD is 10 times larger than the data collected by all other subdetectors of Belle II together
- PXD data cannot be stored on tape



Online data reduction Goal: reduction of the amount of data by a factor of 10 without losing physically relevant data

## Online Data Reduction

- Need fast and efficient way to reduce the data amount
- Cannot reduce data alone
- Use data from Silicon-Strip Detector (SVD) fast readout time (20 ns) SVD is clean
- 4 layers

Radii = 38, 80, 115, 140 mm



## General Idea for Data Reduction

- find all particle tracks from SVD hits (tracking)
- extrapolate the tracks into the direction of the interaction point through the PXD
- determine regions of interest (ROI) on the PXD modules from extrapolated SVD tracks
- Pixels inside the ROI's are stored



× IP

# 2D or 3D Track finding?

#### <u>3D track finding</u>

- was tried by collaborator
- efficiency of 50 % achieved not good enough

#### 2D pattern recognition

- r-z projection: sine curve
- approximation by a straight line for high p<sub>τ</sub> (p<sub>τ</sub> > 150 MeV)



### Track Finding: Hough Transform

- transformation into a 2D parameter space (Hough space)
- example: straight line  $z = mr + t \longrightarrow t = z mr$
- SVD hits are Hough transformed  $\longrightarrow$  straight line for each hit
- intersections in Hough space correspond to parameters of the tracks
- algorithmic challenge: find intersections in Hough space



11

## Find Intersections in Hough Space

- division of the Hough space axes by 2 and thus subdivision into 4 rectangles
- calculate the number of lines in each rectangle
- keep only rectangles containing at least 3 lines
- repeat steps with remaining rectangles
- take parameter values in the middle of the remaining rectangles
- back transformation



## **Back Transformation**

- z = mr + t
- Range of r  $[r_{min}, r_{max}]$
- Calculate  $z_{min}^{}, z_{max}^{}$
- Ring shaped areas on the PXD





areas are quite big

#### Efficiency of the Data Reduction



## Sectors in r-q

Differently shaped sectors for different transverse momenta of the particles



## Test of the Data Reduction



8 inner layer modules

12 outer layer modules

Reduction factor of 13 achieved

## Test of the Data Reduction: Zoom



## Efficiency of the Data Reduction with Sectors



## Conclusion and Outlook

- Tests with physics background look very promising
- Efficiency of 99 % down to 300 MeV
- Average data reduction of factor 10 achieved

Next Steps:

- Improve the efficiency for low momenta
- Find optimal sector configuration
- Hardware implementation (FPGA) by collaborators to check for sufficient speed (<20 µs required)</li>

#### Backup

# Efficiency progress



Claudio Heller, IMPRS Workshop, 3rd of May 2010

# Schematic of the Depfet Pixel



## 2D Projection

r-z-projection of a helix going through the origin:

$$r = \left|\frac{1}{b}\sin\left(az\right)\right|$$



Claudio Heller, IMPRS Workshop, 3rd of May 2010