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Why to break Lorentz invariance?

Unitarity, locality, causality + Poincaré ⇒ limited number of
renormalizable field theories.
There is a possibility to modify the concept of renormalizability,
breaking the Lorentz invariance and enlarging the set of consistent
QFTs.

Enormous precision of Lorentz invariance observed in nature:

the symmetry could be broken at very high energies;

in the low-energy limit we must recover the covariant theory.

Several applications of Lorentz violating field theories: high-energy
extensions of the Standard Model, theories of gravitation, effective
theories in nuclear physics or condensed matter physics.
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Breaking the Lorentz symmetry

Space-time is a d-dimensional manifold M with the Lorentz group
SO(1, d − 1) acting on it.
We split M into “time” and “space” submanifolds,

M = M̂ ×M,

where M̂ has a residual invariance SO(1, d̂− 1), while in M we
have invariance under spatial rotations SO(d).

Any tensor is split consequently:

Tµ1···µn
= T(µ̂1,µ1)···(µ̂n,µn)

.

Example

xµ = (x̂, x), ∂µ = (∂̂, ∂), Aµ = (Â, A).
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Weighted power counting

Definition

Pn,k(x, y) is a weighted polynomial of weight k if Pn,k(ξ
nx, ξy)

is a polynomial in ξ of degree nk.

Weighted scale transformations: time and space variables
behave differently under a scale transformation:

x̂→ e−Ωx̂, x→ e−Ω/nx.

The power counting criterion has to be modified, assigning
different weights to the variables (Anselmi):

[x̂] = −1, [x] = −
1

n
, [∂̂] = 1, [∂] =

1

n
.

Lagrangians are weighted polynomials in the momenta and the
fields.
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Free scalar field

The homogeneous Lagrangian for a free scalar field is

L0 =
1

2
(∂̂ϕ)2 +

1

2Λ2n−2
L

(∂
n
ϕ)2,

and it’s invariant under weighted scale transformations if

[ϕ] = (d− 2)/2,

where d ≡ d̂+ d/n. L has weight [L] = d.
We can add non homogeneous quadratical terms

L =
1

2
(∂̂ϕ)2+

m2

2
ϕ2+

c2

2
(∂ϕ)2+

∑

i<n

ai

2Λ2i−2
L

(∂
i
ϕ)2+

1

2Λ2n−2
L

(∂
n
ϕ)2.

The free propagator is

G0 =
1

p̂2 + p2n/Λ2n−2
L

.
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Renormalizable theories

L
(d̂,d)

= L0 +
∑

N,α,q1,q2

λ(N, q1, q2, α)

N !Λ
q1+q2+N(d/2−1)−d
L

[
∂̂q1∂

q2
ϕN

]
α
.

Vertexes are renormalizable if the coupling constant has weight
[λ] ≥ 0.

Time derivatives of order higher than 2 are not introduced by
renormalization and perturbative unitarity is conserved.

The counterterms are polynomial in m, c and all the ai

The maximal number of external scalar legs that a
renormalizable vertex can have is

Nmax = int

[
2d

d− 2

]
.

Polynomiality in the fields, for strictly renormalizable theories,
requires d > 2.
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Fermions

The free Lagrangian for fermions is

Lf = ψ̄ /̂∂ψ +
1

Λn−1
L

ψ̄ /∂
n
ψ.

The field has weight [ψ] = [ψ̄] = (d− 1)/2. The propagator is

Gf =
−i/̂p+ (−i)n/p

n
/Λn−1

L

p̂2 + p2n/Λ2n−2
L

.

We can add interaction terms with a number of ψ̄ − ψ legs less
than

Nmax = int

[
d

d− 1

]
.

Polynomiality for strictly renormalizable theories requires d ≥ 1.
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Regularization and renormalization

Dimensional regularization: continuation to complex dimension is
made independently in M̂ and M : D̂ = d̂− ǫ̂ and D = d− ǫ.

One loop: divergences are poles ∝ 1/ǫ, where ǫ = ǫ̂+ ǫ/n.

More than one loop: there is a subtraction algorithm for
subdivergences similar to the Lorentz invariant one.

L =
1

2
(∂̂ϕB)

2 +
1

ΛL
2n−2
B

(∂
n
ϕB)

2 +
∑

N

λNB

N !ΛL
KN

B

∂
q
ϕN
B .

The bare quantities are

ϕB = Z1/2
ϕ ϕ, ΛLB = ZΛL

ΛL, λNB = µǫ(N/2−1)(λN +∆N ).

The renormalization constants are power series in the coupling
constants λN , without explicite dependences on µ/ΛL (Anselmi).

The usual Callan-Symanzik equation holds, with β̂λ = µ dλ/dµ.
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Example: renormalization of a scalar model in (2, 2)
dimensions, n = 2

L(2,2) =
1

2
(∂̂ϕ)2 +

c2

2
(∂ϕ)2 +

1

2Λ2
L

(∂
2
ϕ)2 +

m2

2
ϕ2

+
λ4

4!Λ2
L

ϕ2(∂ϕ)2 +
λ

4!
ϕ4 +

λ6
6!Λ2

L

ϕ6.

β4 =
5λ24

2(12π)2
, β6 =

5λ4
(8π)2

(
λ6 −

λ24
36

)
, βc2 =

λ4c
2

3(8π)2
.

The model is IR-free, and for t = ln(µ|x|) → ∞

λ4(t) ∼
2(12π)2

5t
, λ6(t) ∼

1

20
λ24, λ(t) ∼

(λ4(t)
λ4(0)

)13/10
,

c2(t) = c20

( λ4(t)
λ4(0)

)3/10
.
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Theories at low energies

In order to find the low-energy limit, taking t→ ∞ is not sufficient.

At great distances the physical quantities follow ordinary power

counting, thus we must perform also the limit ΛL → ∞.

Lorentz violating theories become of the form

Ll.e. =
1

2
(∂̂ϕ)2 +

c2

2
(∂ϕ)2 +

m2

2
ϕ2 +

λ3
3!
ϕ3 +

λ

4!
ϕ4 + jϕ

+ ηψ̄ /̂∂ψ + vψ̄ /∂ψ +Mψ̄ψ + gϕψ̄ψ

(Colladay-Kostelecký)

Now we can calculate the IR limit, using the low-energy RG.
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Decoupling for ΛL → ∞

It can be shown that renormalizing a theory at high energies, and
then performing the limit ΛL → ∞, is equivalent to renormalize
directly the effective theory at low energies, up to a scheme change.

Theorem

Let L(H) be a Lagrangian renormalizable with weighted power
counting, and let L(L) = limΛL→∞L

(H) be renormalizable
with ordinary power counting.

Let G(H)(k,m; ΛL) be a Green function of the theory (H),
and G(L)(k,m) the corresponding Green function in the
theory (L).

There exist two renormalization schemes Γ(H) and Γ(L) such that

lim
ΛL→∞

G
(H)
R (k,m; ΛL) = G

(L)
R (k,m).
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Identification ΛL ∼ Λ

When ΛL → ∞ there are divergences in ΛL summed to the poles
1/ǫ (or to the Λ divergences). To regularize the low-energy theory
all divergences have to be subtracted.

We have to identify ΛL ∝ Λ, with an arbitrary proportionality
constant.

log ΛL = log Λ + const. ∼
1

ǫl.e.
,

where ǫl.e. = ǫ̂+ ǫ at low energies.

MS scheme: ǫ̂ = 0, ǫ = nǫ.
log ΛL ∼ 1/nǫ = 1/ǫ in the logarithmic divergences makes it
possible to recover the right behavior at low energies.
The coefficients in front of the quadratic divergences remain
undetermined.
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Recovery of covariance

The recovery of Lorentz invariance at low energies is not
automatic: in the limit t→ ∞ c has to be 1 for all fields.
If ci = 1 + δi, where δi are small, then

dδi
dt

= −Cijδj .

If C is positive definite, covariance is automatically restored in
the IR,

otherwise it will be necessary to set δi ≡ 0.

There are results indicating that the Lorentz invariant surface in
parameter space is stable under renormalization group for all
CPT -even theories (Colladay & MacDonald).
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Yukawa theory with N fermions, I

L =
1

2
(∂̂ϕ)2+

c2

2
(∂ϕ)2+

λ

4!
ϕ4+

N∑

α=1

(
ψ̄α /̂∂ψα+vαψ̄α /∂ψα+gαϕψ̄αψα

)
.

Let c2 = 1 + δc2 and vα = 1 + δα.
At zero order in δ the Lorentz invariant result holds

g2α(t) =
g2α(0)

1 + 5g2α(0)
8π2 t

.

At first order we have dδ
dt ≡ −βδ = −C · δ, where

δ ≡




δc2
δ1
...
δN


 , C ≡

1

3(4π)2




12
∑

α g
2
α −24g21 · · · −24g2N

−g21 2g21 · · · 0
...

...
. . .

...
−g2N 0 · · · 2g2N


 .
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Yukawa theory with N fermions, II

Case gα = g, ∀α: eigenvalues and eigenvectors

λ̃0 = 0, δ̃(0) = 2δc2 +
∑

α

δα,

λ̃i = 2, δ̃(i) = δi+1 − δ1, for i = 1, · · · , N − 1,

λ̃N = (12N + 2), δ̃(N) = −12Nδc2 +
∑

α

δα.

We find the solutions for δ̃(i)(t)

δ̃(i)(t) = δ̃(i)(0)
(
1 +

5g20
8π2

t
)
−λ̃i/30

,

with a logarithmic dependence on the energy (powers of
t = ln(µ/E)).



Lorentz violating field theories Low-energy limit Experimental constraints and phenomenology Conclusions

Experimental data

Problem: there are many different estimates for ΛL.

Neutrino mass from terms like ϕ2ψ̄ψ: ΛL ∼ 1014 GeV;

Quantum gravity, etc.: ΛL ∼ 1018 GeV (Planck’s mass);

Lower bounds on ΛL from measures of δc = c− 1 for
different particles.

Several data about precision of Lorentz invariance, mostly from
astrophysical measures (Kostelecký & Russell).

δc E (GeV)

e 10−15 103÷5

µ 10−11 104÷5

τ 10−8 104÷5

ν 10−21 102

δc E (GeV)

p 10−9 104÷5

π 10−10 104÷5

K 10−9 104÷5

D 10−8 104÷5

B 10−7 104÷5

Decay time of high-energy cosmic rays (1011 GeV) ⇒ δc . 10−21.



Lorentz violating field theories Low-energy limit Experimental constraints and phenomenology Conclusions

δc running

Can the running of δc alone explain the smallness of these
parameters at low energies?

The differences δα − δβ have no appreciable running over
many orders of magnitude: they are small after fine-tuning.

1 1000 106 109 1012 1015 1018

0.94

0.96

0.98

1.00

1.02

1.04

1.06
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δc running

The running of δ̃N ≃ (6N + 1)δc depends strongly on the
number of fermions N and the coupling constant g.

1 1000 106 109 1012 1015 1018

10-5

10-4

0.001

0.01

0.1

1

(a) g0 = 1, N = 24
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δc running

The running of δ̃N ≃ (6N + 1)δc depends strongly on the
number of fermions N and the coupling constant g.

1 1000 106 109 1012 1015 1018

0.992

0.994

0.996

0.998

1.000

(b) g0 = 0.01, N = 24
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Dependence on the number of fermions N

The rate at witch δc becomes small in the IR grows with N .

50 100 150 200

10-30

10-23

10-16

10-9

0.01

δc(E = 105GeV), with δc(ΛL) = 1, as a function of N .
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Operators of dimension > 4

Including higher derivative terms the dispersion relations are
modified:

Es =

√√√√c2p2 +
∑

k

b2k
p2k

Λ2k−2
L

+
p2n

Λ2n−2
L

+m2,

Ef =

√
p2
(
c−

∑

k odd

(−1)
k+1

2

bk

Λk−1
L

pk−1
)2
+

(
m+

∑

k even

(−1)
k

2

bk

Λk−1
L

pk
)2
.

For n = 2:

E ≃ cp+
p3

2Λ2
L

⇒ v = c+
p2

2Λ2
L

.

δc . 10−15 at 105 GeV ⇒ ΛL & 1012÷13 GeV.

δc . 10−23 at 1011 GeV ⇒ ΛL & 1022 GeV (Gagnon & Moore).
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Operators of dimension > 4 (n=3)

For n = 3 (Standard Extended Model, Anselmi):

E ≃ cp+
b2

2

p3

Λ2
L

+
4− b4

8

p5

Λ4
L

⇒ v = c+
b2

2

p2

Λ2
L

+
4− b4

8

p4

Λ4
L

.

δc . 10−15 at 105 GeV ⇒ ΛL & 109 GeV, and no
fine-tuning is needed on b.

δc . 10−23 at 1011 GeV ⇒ ΛL & 1016÷17 GeV, and
b . 10−8.

For fermions:

E ≃ cp+
b2 − 2

2

p3

Λ2
L

+
4b2 − b4

8

p5

Λ4
L

,

so b2 ≃ 2; all the precedent results hold.
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Conclusions

Low-energy limits of Lorentz violating theories, renormalizable
respect to weighted power counting, are theories that are
renormalizable in the usual sense.

The recovery of Lorentz invariance in the infrared limit is
triggered by the behavior of some parameters. In the
considered cases Lorentz invariance is automatically restored.
Anyway, to obtain the required precision we must advocate a
fine tuning at low energies.

Experimental limits are mostly in agreement with the
estimates coming from the neutrino masses, that predict a
value for ΛL of about 1014 GeV. However, the scale of
Lorentz violations could be lower than the Planck scale.

It could be interesting to review the experimental data
considering modifications to the high-energy physics
potentially coming from the Lorentz violating interactions.
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Standard Extended Model

The Lorentz violating extension of the Standard Model has d̂ = 1
and n = 3 (Anselmi). A simplified Lagrangian, containing only
terms that are generated by renormalization, is

L =
1

4

∑

G

(
2F̃GηG(Υ)F̃G + F

G
τG(Υ)F

G
)

+ |D̂ϕ|2 +
a0
Λ4
L

|D
3
ϕ|2 +

a1
Λ2
L

|D
2
ϕ|2 + a2|Dϕ|

2 +m2
Hϕ

2 +
g2λ4
4

|ϕ|4

+
3∑

a,b=1

∑

I

ψ̄a
I

(
δab /̂D +

babI
Λ2
L

/D
3
+ cabI /D

)
ψb
I +

∑

α

Y4f
Λ2
L

[
ψ̄ψψ̄ψ

]
α

+ g
3∑

a,b=1

(
Y ab
1 L̄aiℓbR + Y ab

2 ūaRQ
bj
L ε

ij + Y ab
3 Q̄ai

L d
b
R

)
ϕi + h.c.

+
3∑

a,b=1

ḡ2

4ΛL
Y ab(Laiϕi)(L

bjϕj) +
∑

I

∑

α

g

Λ2
L

[
DF (ψ̄IΓψI)

]
α
.
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Some scalar models

The homogeneous Lagrangians (invariant under weighted scale
transformations) have the general form

L =
1

2
(∂̂ϕ)2+

1

2Λ2n−2
L

(∂
n
ϕ)2+

∑

N,α

λ(N,α)

N !Λ
(n−1)(N+d̂−d̂N/2)
L

[
∂
nd(N)

ϕN
]
α
,

with d(N) ≡ d(1−N/2) +N .

Two models in d = 4 (n = 2)

L(1,3) =
1

2
(∂̂ϕ)2 +

1

2Λ2
L

(∂
2
ϕ)2 +

λ6
6!Λ4

L

ϕ4(∂ϕ)2 +
λ10

10!Λ6
L

ϕ10,

L(2,2) =
1

2
(∂̂ϕ)2 +

1

2Λ2
L

(∂
2
ϕ)2 +

λ4
4!Λ2

L

ϕ2(∂ϕ)2 +
λ6

6!Λ2
L

ϕ6.

All the super-renormalizable terms that are compatible with the
symmetries can be added.
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Some models of fermions and scalars

A four fermion model (d = 4, n = 3)

L(1,3) = ψ̄ /̂∂ψ +
1

Λ2
L

ψ̄ /∂
3
ψ +

∑

α

λα
Λ2
L

[
ψ̄2ψ2

]
α
.

Two homogeneous models (d = 4, n = 2)

L(1,3) = L0(ϕ) +Lf (ψ̄, ψ) +
λ2
2Λ2

L

ϕ2(ψ̄ /∂ψ) +
λ′2
2Λ2

L

ϕ2∂(ψ̄γψ)

+
λ4

4!Λ3
L

ϕ4ψ̄ψ +
λ6

6!Λ4
L

ϕ4(∂ϕ)2 +
λ10

10!Λ6
L

ϕ10.

L(2,2) = L0 + Lf +
λ2
2ΛL

ϕ2ψ̄ψ +
λ4

4!Λ2
L

ϕ2(∂ϕ)2 +
λ6

6!Λ2
L

ϕ6.
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Gauge theories

Interactions with gauge fields are built through minimal coupling
with D = (D̂,D) = (∂̂ + gÂ, ∂ + gA). The weights of g and the
fields are

[g] = 2−
d

2
, [Â] =

d

2
− 1, [A] =

d

2
−

3

2
.

The gauge Lagrangian is

Lg =
1

4

{
F̂ 2 + 2F̃ η(Υ)F̃ + Fτ(Υ)F +

1

Λ2
L

(D̂F )ξ(Υ)(D̂F )
}
,

where F̂ = Fµ̂ν̂ , F̃ = Fµ̂ν , F = Fµν and Υ = D
2
/Λ2

L.
The regularity of the propagators requires:

d̂ = 1, d < 2 +
2

n
, d even, n odd.
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Example: scalar tadpole (n=2)

=

∫
dD̂p̂

(2π)D̂

dDp

(2π)D

−λ− λ4

6Λ2
L

(k
2
+ p2)

p̂2 + c2p2 + p4

Λ2
L

≡ T0+T2k
2
.

Using dimensional regularization we find

T2 =
λ4c

2

6(4π)2

(1
ǫ
− 2 log ΛL + 1− γE − log

( c2
4π

))
,

T0 =
Λ2
L

(4π)2

[( 1

2ǫ
− log ΛL

)(
2λc2 −

λ4c
4

6

)
+ const.

]
.

To eliminate all the divergences ∝ k
2
we set

log ΛL =
1

2ǫ
+ const. =

1

ǫ
+ const.
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Yukawa theory with N fermions

First order correction to gα:

g2α(t) = g2α(0)

{
1 +

5g2α(0)

8π2
t

+
g2α(0)

g20

N∑

i=0

A
(α)
i δ̃(i)(0)

1− λ̃i/30

[(
1 +

5g20
8π2

t
)1−λ̃i/30

− 1
]}−1

.
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