Quenching Factor Measurement of CaWO₄

Quirin Kronseder

Munich May 03, 2010

CRESST

- Aim of CRESST: direct detection of Dark Matter in form of WIMPs
- WIMPs scatter elastically off the target nuclei
- → Target material (CaWO₄)
- One advantage: different target materials can be used

Detection System

- → CaWO₄ is a scintillator
- Deposited energy is converted into:
 - ~99% phonons
 - ~1% scintillation light
- Two channels detection system
 - \rightarrow energy of phonons: E
 - \rightarrow energy of scintillation light: L

- Different particles transfer energy to different components of the target (e⁻ or O, Ca, W)
- $\gamma, \beta \rightarrow e^{-}$ recoil
- → Neutron \rightarrow O-recoil
- → WIMP \rightarrow W-recoil

- Different particles transfer energy to different components of the target (e⁻ or O, Ca, W)
- $\gamma, \beta \rightarrow e^{-}$ recoil
- → Neutron → O-recoil
- $\textbf{ } \textbf{ WIMP} \rightarrow \textbf{W-recoil}$

Type of recoil \rightarrow incident particle

- → e⁻-recoil and O-recoil bands were measured!
- W-recoil band cannot be measured directly!

Additional experiment is needed

- → e⁻-recoil and O-recoil bands were measured!
- W-recoil band cannot be measured directly!

Additional experiment is needed

 → Light from nuclear recoils is quenched compared to e-recoils
L(nuclear recoil, E₀)

 $QF := \frac{L(nuclear recoil, E_0)}{L(electron recoil, E_0)}$

Nuclear Recoil Measurement

$$QF := \frac{L(nuclear recoil, E_0)}{L(electron recoil, E_0)}$$

Nuclear Recoil Measurement

$$QF := \frac{L(nuclear recoil, E_0)}{L(electron recoil, E_0)}$$

Experimental Setup

- → LASER pulse desorbs and ionizes atoms from sample
- → Ions accelerated to $E_{kin} = 18 \text{keV}$
- Ions with a predefined time of flight can pass the deflexion plate
- Only ions with the correct mass reach the detector

Advantage: knowing arrival time of ions \rightarrow dark count rate is decreased

Detection System

- Impinging ions O, Ca, and W mimic recoiling nuclei in the crystal
- Teflon housing reflects scintillation photons into the photomultiplier
- Photomultiplier is in single photon detection mode

In principle light production of all elements can be measured

Ion Measurement

Aim: Measure the number of photons produced by a single ion

- LASER intensity optimized to have mainly one ion reaching crystal
- In rare cases more ions can reach the crystal at the same time

Amount of photons for one Hydrogen ion ≈ 30.34

Ion Measurement

Amount of photons for one Tungsten ion ≈ 1.77

Aim: Measure the number of photons produced by a single ion

- LASER intensity optimized to have mainly one ion reaching crystal
- In rare cases more ions can reach the crystal at the same time
- → For heavy ions less light is produced
- → Overlap of 0, 1, and 2-ions peaks
- No clear identification of single ion induced light

Ion Measurement

Amount of photons for one Tungsten ion ≈ 1.77

Aim: Measure the number of photons produced by a single ion

- LASER intensity optimized to have mainly one ion reaching crystal
- In rare cases more ions can reach the crystal at the same time
- → For heavy ions less light is produced
- → Overlap of 0, 1, and 2-ions peaks
- No clear identification of single ion induced light

Main contribution to measurement uncertainties

15

e⁻-Recoil Measurement

$$QF := \frac{L(nuclear recoil, E_0)}{L(electron recoil, E_0)}$$

e⁻-Recoil Measurement

$$QF := \frac{L(nuclear recoil, E_0)}{L(electron recoil, E_0)}$$

 → e⁻-recoils are produced by gamma radiation

e⁻-Recoil Measurement

$$QF := \frac{L(nuclear recoil, E_0)}{L(electron recoil, E_0)}$$

 → e⁻-recoils are produced by gamma radiation

→ Radioactive source facing the detector

 Produced scintillation light is measured

Gamma Measurement

- → Standard source with 18keV gamma does not exist
- The number of scintillation photons proportional gamma energy
- → Interpolation to 18keV

Gamma Measurement

- → Standard source with 18keV gamma does not exist
- → The number of scintillation photons proportional gamma energy
- → Interpolation to 18keV

Number of photons for 18keV gamma: 45.35

Quenching Factors - Results

- → Produced light decreases with increasing ion mass
- → Possible to distinguish recoils from Oxygen, Calcium and Tungsten

Light output measured for 17 different elements

Quenching Factors - Results

- Produced light decreases with increasing ion mass
- → Possible to distinguish recoils from Oxygen, Calcium and Tungsten

Light output measured for 17 different elements

Conclusion - Outlook

- → Conclusion
 - Quenching Factor of Tungsten has been measured within my work

Conclusion - Outlook

- → Conclusion
 - Quenching Factor of Tungsten has been measured within my work

Band of WIMP events has been fixed

Conclusion - Outlook

- → Conclusion
 - Quenching Factor of Tungsten has been measured within my work

Band of WIMP events has been fixed

- → Outlook
 - Quenching Factor measurements of different target crystals (CaWO₄ → ZnWO₄)
 - Low temperature measurements with a cryostat as in CRESST

Attachment

Old Quenching Factors

Attachment

→ Number of photons for ions similar but for gammas at 18keV the measurements differs:

First Measurement : 73.48

Second Measurement : 49.00

Current Measurement: 45.36

Attachment

New Quenching Factors

- Tungstate value obtained from second measurement
- Reanalyzed gamma measurement causes consistant