Search for doubly charged Higgs bosons via the VBF production mode

Nicholas Leister

17.5.2021

Table of contents

Part A

1.Atlas detector 2.Higgs-model 1.Standard-model Higgs **2.GM-Model Expansion** 3.State of the art – $H^{\pm\pm}$ 1.Event Variables/Selection 2.Analysis **3.**Results

Part B

1.Vector Boson Fusion H^{±±}
1.Events

variables/selection
2.Background
estimation

3.MVA Training
4.Outlook

ATLAS detector (I)

Front view of **ATLAS**: one of four LHC experiments, multipurpose particle detector with forward-backward symmetric cylindrical geometry

[2]

ATLAS detector (II)

ATLAS detector (III)

Combination of detector data for

- particle identification
- momentum
- energy determination

Standard-Model Higgs (I)

- Gauge Bosons are massless → local gauge symmetry of *L* is conserved
- W[±], Z Bosons acquire their mass by interacting with the background-field
- Introduce scalar Higgs-field:

$$\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} \begin{pmatrix} +\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}$$

Standard-Model Higgs (II)

 Second component of the doublet with non vanishing VEV (Vacuum expectation value) → Spontaneous symmetry breaking (SSB)

$$V = \mu^2 (\phi^{\dagger} \phi)^2 + \lambda (\phi^{\dagger} \phi)^4$$

• Development of the complex field:

$$\begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} \longrightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + h(x) + i\zeta(x) \end{pmatrix}$$

VEV Higgs-B Goldstone-B

Standard-Model Higgs (III)

Covariant derivative:

$$D_{\mu} = \partial_{\mu} \cdot \mathbb{1} + ig'YB_{\mu} \cdot \mathbb{1} + i\frac{g}{2}\vec{\sigma} \cdot \vec{W}_{\mu}$$

Coupling between the massless gauge bosons and the Higgs-field lead to mass term in \mathscr{L}

GM-Model (I)

Georgi-Machecek model

- Expansion of the minimal Higgs sector → BSM (Beyond the standard model)
- 2 additional isospin triplet scalar fields, with non vanishing VEV for the neutral field:

$$\begin{array}{c} \text{Real} \\ \xi = \begin{pmatrix} \xi^+ \\ \xi^0 \\ \xi^{+*} \end{pmatrix}, \qquad \chi = \begin{pmatrix} \chi^0 \\ \chi^- \\ \chi^{--} \end{pmatrix} \qquad \longrightarrow \begin{pmatrix} \chi^{0*} & \xi^+ & \chi^{++} \\ -\chi^- & \xi^0 & \chi^+ \\ \chi^{--} & -\xi^- & \chi^0 \end{pmatrix}$$

• Additional kinetic terms in \mathscr{L} (Covariant field derivatives)

GM-Model (II)

After SSB, rearranging of the fields under custodial symmetry transformations (comparable to spin addition)

- SM Higgs ($\Phi^*, \Phi \rightarrow bidoublet$): $2 \otimes 2 \longrightarrow 3 \oplus 1$
- GM Higgs: $3 \otimes 3 \longrightarrow 5 \oplus 3 \oplus 1$

Singlet corresponds to SM Higgs (125 GeV) 5-plet can be identified with physical Higgs $H_5 = (H_5^{\pm\pm}, H_5^{\pm}, H_5^{0})$

Production Modes $\gamma^*/Z^*,W^*$

Experimental useful final states (W $\rightarrow l\nu_l/q\overline{q}$):

- 2 same charged leptons (2lsc)
- 3 leptons (3l) + Quarks (Jets)
- 4 leptons (4l)

11

Characteristic Event Variables γ/Z

 $p_{T,L}$, $p_{T,j}$ Transvers jet/lepton momentum

 N_{jets} , N_{b-jet} Number of (b-)jets,

 E_{miss}^{T} Missing transvers momentum (Neutrinos)

 m_{jets}, m_{xl} Jet mass, lepton mass

 $\Delta \mathbf{R} = \sqrt{\Delta \phi^2 + \Delta \eta^2} \eta \cdot \phi$ angular separation of two objects

Event Selection (Preselection)

- Detector specific restrictions
- Improve signalbackground ratio (more in detail later)

Selection criteria	2ℓ ^{sc}	3ℓ	4ℓ			
At least one offline tight lepton with $p_T^{\ell} > 30$ GeV that triggered the event						
N_{ℓ} (type L)	=2	=3	=4			
N_{ℓ} (type L [*])	-	-	=4			
N_{ℓ} (type T)	=2	$\geq 2(\ell_{1,2})$	≥1			
$ \Sigma Q_{\ell} $	=2	=1	≠4			
Lepton $p_{\rm T}$	$p_{\rm T}^{\ell_1,\ell_2} > 30,20 { m GeV}$	$p_{\rm T}^{\ell_0,\ell_1,\ell_2} > 10, 20, 20 {\rm GeV}$	$p_{\rm T}^{\ell_1,\ell_2,\ell_3,\ell_4} > 10 {\rm GeV}$			
$E_{ m T}^{ m miss}$	> 70 GeV	> 30 GeV	> 30 GeV			
N _{jets}	≥ 3	≥ 2	-			
N _{b-jets}	=0					
Low SFOC $m_{\ell\ell}$ veto	_	$m_{\ell\ell}^{\rm oc} > 15 {\rm GeV}$				
Z boson decay veto	$ m_{ee}^{\rm sc} - m_Z > 10 {\rm GeV}$	$ m_{\ell\ell}^{\rm oc} - m_Z > 10 {\rm GeV}$				

Type L: "Loose" Type T: "Tight" (Isolation)

[6]

Event Selection (Selection)

- Detector specific restrictions
- 2. Improve signalbackground ratio (more in detail later)

Charged Higgs boson mass	$m_{H^{\pm\pm}} = 200 \text{GeV}$	$m_{H^{\pm\pm}} = 300 \text{GeV}$	$m_{H^{\pm\pm}} = 400 \text{GeV}$	$m_{H^{\pm\pm}} = 500 \text{ GeV}$	
Selection criteria	$2\ell^{\rm sc}$ channel				
m _{jets} [GeV]	[100, 450]	[100, 500]	[300, 700]	[400, 1000]	
S	< 0.3	<0.6	<0.6	<0.9	
$\Delta R_{\ell^{\pm}\ell^{\pm}}$	<1.9	<2.1	<2.2	<2.4	
$\Delta \phi_{\ell\ell,E_{\mathrm{T}}^{\mathrm{miss}}}$	<0.7	<0.9	<1.0	<1.0	
$m_{x\ell}$ [GeV]	[40, 150]	[90, 240]	[130, 340]	[130, 400]	
$E_{\rm T}^{\rm miss}$ [GeV]	>100	>130	>170	>200	
Selection criteria	3ℓ channel				
$\Delta R_{\ell^{\pm}\ell^{\pm}}$	[0.2, 1.7]	[0.0, 2.1]	[0.2, 2.5]	[0.3, 2.8]	
$m_{x\ell}$ [GeV]	>160	>190	>240	>310	
$E_{\rm T}^{\rm miss}$ [GeV]	>30	>55	>80	>90	
$\Delta R_{\ell j e t}$	[0.1, 1.5]	[0.1, 2.0]	[0.1,2.3]	[0.5, 2.3]	
$p_{\mathrm{T}}^{\mathrm{leading jet}}$ [GeV]	>40	>70	>100	>95	
Selection criteria	4ℓ channel				
$m_{x\ell}$ [GeV]	>230	>270	>360	>440	
$E_{\rm T}^{\rm miss}$ [GeV]	>60	>60	>60	>60	
$p_{\rm T}^{t_1}$ [GeV]	>65	>80	>110	>130	
$\Delta R_{\ell^{\pm}\ell^{\pm}}^{\min}$	[0.2, 1.2]	[0.2, 2.0]	[0.5, 2.4]	[0.6, 2.4]	
$\Delta R_{\ell^{\pm}\ell^{\pm}}^{\max}$	[0.3, 2.0]	[0.5, 2.6]	[0.4, 3.1]	[0.6, 3.1]	

[6]

State of the art – Analysis (I)

Techniques to estimate contributions from the dominant background processes.

Relevant contributions:

- WZ production (dominant for 2lsc, 3l)
- Electron charge flip (misidentification of e[±] charge for 2l^{sc})
- Non-prompt-lepton (misidentification of jets as leptons in all channels)
- Other SM contributions (MC simulations)

Analysis (II)

Data and prediction in good agreement for control region as well as in the 3I Signal region (**SR**)

Analysis (III)

Data in agreement with background ($2l^{sc}$ channel), but not with (double) charged Higgs hypothesis. Same results for m_{xl} , m_{jets} .

Analysis (IV)

The measured data are in agreement with the background predictions for the 3l channel.

Analysis (V)

Data consistent with background predictions in the 4l channel, with small statistical fluctuations .

Analysis (VI)

Combination of results:

Observations and Monte Carlo predictions are consistent to each other considering the total uncertainties

Input for upper limit determination for $\sigma x B$.

Statistical Analysis

Likelihood (function): measures goodness of a fit **Likelihood ratio test**: Comparing goodness of a fit for two competing statistical models upon likelihood ratio

Maximization of free parameter space (signal strength $\rightarrow \sigma$)

Additional constraints: Nuisance parameters (stat. uncertainties)

Define **upper limits & confidence level (CL)** on model parameters.

Analysis (VII)

Expected limit:

 $\mu \times$ Signal + Background vs. Background

Observed limit:

 $\mu \times \text{Signal} + \text{Background}$ vs. Data

The combined data are not sensitive for heavy H^{±±} bosons with masses > 320 GeV

Results

No significant excess over expected yields.

Considered model can be excluded

- at a 95% confidence level for m_{H^{±±}} < 350 GeV (pair production)
- at a 95% confidence level for m_{H^{±±}} < 230 GeV (mixed production)

PART B: Vector Boson Fusion (VBF)

- 2 jets + central dileptons
- Large values of transverse momentum $p_T/mass m_T$
- Jets in different hemispheres (~ back to back)
- \rightarrow Expect clear signature of the signal process [8]

Event Variables VBF H^{±±} (I)

Centrality (W/Leptons boosted in transversal direction) $\rightarrow \zeta > 0$ for VBF

 $\zeta = \min\left[\min(\eta_{l1}, \eta_{l2}) - \min(\eta_{l1}, \eta_{l2}), \quad \max(\eta_{j1}, \eta_{j2}) - \max(\eta_{l1}, \eta_{l2})\right]$

 $\Delta \eta_{ii}$ (Pseudorapidity gap, jets back to back)

$$\eta = -ln\left[tan\left(\frac{\theta}{2}\right)\right]$$

Event Variables VBF H^{±±} (II)

 $m_T = |pT|$ (Transversal mass)

$$m_{jj} = |p_{j1} + p_{j1}|$$
 (Dijet mass)

$$\Delta oldsymbol{\phi}_{jj}$$
 (Azimuth angle between jets)

 \rightarrow Choose variables with the best background separation

Event Variables VBF H^{±±} (III)

Centrality

Event Variables VBF H^{±±} (IV)

Event Variables VBF H^{±±} (VI)

m_{jj}

Separation difficult for low masses.

Better suited for possible heavy H^{±±}.

Event Variables VBF H^{±±} (VII)

Event Variables VBF H^{±±} (V)

Candidate as input for maximum likelihood fit

 m_T

Event Selection (I)

Limiting the available signal region (Cuts)

→ Improves the signal/ background ratio

Mostly lower bounds, for $\Delta \phi_{jj}$ upper bound

Event Selection (II)

Improve ratio ↔ Maximise signal Quantified by significances, e.g.:

$$\frac{s}{\sqrt{b}}$$
 s (b) = Number of signal (background) events
 $\sqrt{2[(n+b)\log(1+\frac{n}{b})-n]}$

\rightarrow Determine max. value

Event Selection (III)

$$\sqrt{2[(n+b)\log\left(1+\frac{n}{b}\right)-n]}$$

Maximum significance close to intersection from signal to background.

Event Selection (IV)

Problem: if variables depend on each other Cuts may influence other variables \rightarrow low signal

Analyse correlation in **2D-Histograms**

Event Selection (V)

Probably no correlation between the variables. m_T is limited by Higgs Mass (340 GeV).

Event Selection (VI)

Centrality

Probably no correlation (no visible function dependence) \rightarrow Further in depth analysis

Event Selection (VII)

Clearly no correlation \rightarrow Cuts possible for ϕ_{ii}

Event Selection (IIIX)

Strongly correlated, linear dependence \rightarrow Caution with cuts for centrality **and** η_{ii}

Background Estimation (I)

W[±]W[±] jj (so far) + W[±]Z jj

Restrict possible events for better separation:

- Jets in different hemispheres
- Number of jets/leptons
- Leptons of same charge (Z resonance)

Background Estimation (II)

Small difference between different channels for all variables \rightarrow Same cuts and event variables

MVA Training

Multi variant analysis training

Separation signal background via MVA:

$$egin{array}{ll} \phi_{jj} & \phi_{ll} & \eta_{jj} & \mathsf{M}_{jj} \ \mathsf{Centrality} & j_T^{Lead} & j_T^{Sublead} \end{array}$$

 \mathbf{m}_{T} is needed for maximum likelihood fit, \mathbf{m}_{II} is not independent $\rightarrow m_{T}$, m_{II} not included in training (no cuts)

Variable Correlation

Determine dependencies between variables: Prevent cut interferences (as before)

Quantification: Linear dependence coefficients from mean value (in gradient percentage $m = 1 \triangleq 100$)

Correlation Matrix

Summary of linear correlation coefficients (signal) in correlation matrix for m_H = 340 GeV

Example from before: Centrality $\leftrightarrow \eta_{jj}$ Strongly dependent

Decision Trees

Separation background signal via **decision trees** [10]:

- Training/Testing with simulations
- Reconstruct more signal (no exclusion because of one variable)
- Combination of multiple trees
- \rightarrow Boosted decision trees

Signal/Background response

Ratio of trees identifying event as signal \equiv **Response**

Results for training set ($m_H = 340 \text{ GeV}$):

Integration for a given boundary determines signal efficiency (ratio) & Background rejection

Signal/Background Response (II)

Results for training set ($m_H = 700 \text{ GeV}$):

Even better signal (background) identification (High ratio with clear signal (background) response \cong 1 (-1))

Defining Cuts

Boundary (Cut) is set according to the used **metric**

(e.g.: $\frac{s}{\sqrt{s+b}}$) Suggested cut for significance at a response of -0.27 (background region)

Outlook

1.

Add/sum different backgrounds with relative weight to each other and signal

2.

Calculate expected upper limits for $\sigma \times B$ with 95% CL

Acknowledgments

Prof. Hubert Kroha Dr. Dominik Duda

Thank your for your attention!

Sources

- [1] https://atlas.cern/discover/detector
- [2] https://de.wikipedia.org/wiki/ ATLAS_(Detektor)#/media/ Datei:LHC_02.svg
- [3] httpa://www.lhc-closer.es/ taking_a_closer_loos_at_lhc/0.atlas
- [4] The ATLAS and CMS detectors, Luis Roberto & Flores Castillo
- [5] Testing the Standard Model, lecture by D. Duda

Sources

- [6] https://atlas.web.cern.ch/Atlas/GROUPS/ PHYSICS/PAPERS/HDBS-2019-06/
- [7] Searching for the doubly-charged Higgs bosons in the Georgi-Machacek model at the electron-proton colliders, Hao Sun et al
- [8] https://s3.cern.ch/inspire-prod-files-f/fcb76c1fa98fc62d1ab346aa307acd6e
- [9] Vector Boson Scattering, lecture by Ulrike Schnoor
- [10] TMVA 4 User Guide