Department of Physics Technical University of Munich

Search for heavy $H^+ \rightarrow tb$ Proseminar: Physics at the Large Hadron Collider

Florian Kiwit

Department of Physics Technical University of Munich

July 5th, 2021

1 Theoretical Background

- 2 The experiment
- 3 The signal process
- Analysis strategy
- 5 Results
- 6 Appendix

Standard model of particle physics (SM)

- Consistent theory that describes today's knowledge in particle physics
- High agreement with most experimental data
- Predicts one Higgs-Boson
- Open questions in particle physics:
 - Hierarchy problem
 - Neutrino masses
 - □ Matter–antimatter asymmetry
 - Dark matter

\Rightarrow BSM physics has to exist

Figure 1 SM particles.

Physics beyond the Standard Model (BSM) Minimal Supersymmetric Standard Model (MSSM)

- Considers only "the [minimum] number of new particle states and new interactions consistent with phenomenology"¹
- Cures problems of the SM
- Supersymmetric extension of the SM
 - Superpartner for every SM particle differing by Spin-1/2

Nomenclature:

- Fermions: write s in front of name
- Bosons: append -ino

ŝ ĥ photino d ĩ ν<u>.</u>, ٧ Ñ zino ŵ ẽ ũ wino Ĥ higgsino squarks sleptons & sneutrinos neutralinos ỹº & charginos ỹ[±]

ĩ

ĉ

ũ

ĝ

Figure 2 Superpartners.

gluino

Higgs mechanism Standard Model

Higgs field: $\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + h(x) + i\zeta(x) \end{pmatrix}$

Lagrange density: $\mathcal{L} = (D_{\mu} \phi)^{\dagger} (D^{\mu} \phi) - V$ $V = \mu^{2} (\phi^{\dagger} \phi) + \lambda (\phi^{\dagger} \phi)^{2}$ $\square \mu^{2} < 0$ $\square \lambda > 0$

Vacuum expectation value: $\phi_0 = \frac{|\mu|}{\sqrt{2\lambda}} = \frac{v}{\sqrt{2}} \approx \frac{246}{\sqrt{2}} \text{ GeV}$

Figure 3 The Higgs potential.

Higgs mechanism Supersymmetric 2HDM

- Single Higgsino leads to a gauge anomaly, theory would be inconsistent
- Simplest theory adds two scalar Higgs doublets (2HDM)

$$\Box \ \phi_a = \begin{pmatrix} \phi_a^+ \\ (v_a + \rho_a + i\eta_a)/\sqrt{2} \end{pmatrix}, \ a = 1, 2$$

8 fields

- Reduced by 3 to give mass to $W^{+/-}, Z$
- Remaining 5 are the pyhsical Higgs fields (H, h, A, H^{+/-})²
- □ Type-II: up- and down-type quarks couple to separate doublets

lpha and eta determine the interactions of Higgs fields with vector bosons + fermions

ratio of vacuum expectation values: $\tan \beta = \frac{v_{\phi_1}}{v_{\phi_2}}$

 \Rightarrow considered Theory: SUSY \rightarrow MSSM \rightarrow 2HDM \rightarrow Type-II

² Theory and phenomenology of two-Higgs-doublet models (Branco, Ferreira, Lavoura, Rebelo, Sher, Silva - 2006)

Theoretical Background

2 The experiment

- 3 The signal process
- Analysis strategy
- 5 Results
- 6 Appendix

The Experiment Large Hadron Collider (Proton Mode)

- Circular collider with circumference of 26.7 km
- World's largest and highest-energy artificial particle collider
- Proton-proton collisions
- \checkmark \sqrt{s} = 13 TeV
- L = $2.1 \cdot 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

Figure 4 CERN accelerator complex.

The Experiment Detectors

(Compact Muon Solenoid)

- Theoretical Background
- 2 The experiment
- 3 The signal process
- Analysis strategy
- 5 Results
- 6 Appendix

The search for new physics

The event:

Search for heavy charged H production (in association with tb)

- $\Box~$ Heavy: $m_{H^{\pm}} > m_t$
- Charged H decaying into tb
 - \Box Higgs coupling \propto particle mass
- Large b-jet multiplicity

The event The top quark

Top quark decay leads to clear signature in the detector

$$m_t = 172.76 \pm 0.3 \text{ GeV}$$

$$\Rightarrow \text{ short lifetime } \tau \approx 5 \cdot 10^{-25} \text{ s}$$

- t decay via weak force faster than the hadronization time
- 99.8% of the top quarks decay to bW ⇒ CKM-preferred
- W decays leptonically or hadronically

The event

10

The event b-tagging

- High b-jet multiplicity
- $\mathbf{m}_{b}=4.18~\text{GeV}$ much more massive than its decay products
 - \Rightarrow decay products have high p_t
- b decay CKM-suppressed
- $\Rightarrow \text{Long lifetime}$
- \Rightarrow Secondary vertex tracking

Figure 5 b Identification.

The event

The event

4 b

b b q / u_{ℓ} 8 decay products 4 directly related to H^{\pm} $\bar{\mathsf{q}}'$ / ℓ^+ $g \longrightarrow$ H^+ $g \longrightarrow 0000$ Up to 4 light jets b Up to two l/ν_l - pairs q / $\ell^$ $ar{\mathsf{q}}'$ / $ar{
u}_\ell$ b

Background

Main backgrounds:

 $\blacksquare t\bar{t} (+b\bar{b})$

Other backgrounds:

- Single top quark production
- $t\bar{t} + X$ with $X = (W, Z, \gamma, H, t\bar{t})$

V+jets

Diboson (WZ, ZZ, WW, VH)

- Theoretical Background
- 2 The experiment
- 3 The signal process
- 4 Analysis strategy
- 5 Results
- 6 Appendix

Analysis strategy General approach

Figure 6 Event generation, detection and reconstruction.

Analysis strategy Search for charged H to tb

- 1. Monte Carlo simulations of
 - (a) SM processes (\Rightarrow Background)
 - (b) 2HDM Type-II for 18 $m_{H^{\pm}} \in [200 \; {\rm GeV}, 2000 \; {\rm GeV}] \; (\Rightarrow \text{Signal})$
- 2. Kinematic restrictions on reconstructed observables to select specific phase-space region $(H^\pm \to t\bar{b})$
- 3. Machine Learning to determine signal
- 4. Apply maximum likelihood approach to fit MC predictions to the data
- 5. Apply identical restrictions to data and compare it to simulation

Figure 7 Data and SM background as a function of m_{H^\pm} (CMS all-jet).

Event Selection Event categories

CMS all-jet final state

- resolved: qq from W decay + additional jet b tagged
- boosted: top-flavored jet / W-jet
- at least one b-tagged jet
- no leptons / τ -jets

- CMS (l+j) final state ■ single-lepton
 - \Box one e/ or μ
 - dilepton
 - at least two jets
 - at least one b-tagged

g

ATLAS (11+j) final state

- one e/μ with a lepton of the same flavor
- at least five jets
 - at least two b-tagged

Event Selection Machine Learning

CMS (single lepton, jet only)

- Boosted decision tree with gradient descent (BDTG)
- train-val-test: 1/3 of the data set each

CMS (dilepton)

- Deep Neural Network
- train-val-test: 1/3 of the data set each

Figure 8 Schematic representation of a BDT.

Figure 9 Schematic representation of a NN.

Event Selection Input parameters (CMS lep)

Figure 10 Representative input parameters of the NN.

-	H_{T}	Scalar sum of the jet transverse momenta
2	PTb	Largest p_T among the b-tagged jets
anc	p_{T}^{miss}	Missing transverse momentum
16	$\min m(\ell, b)$	Minimum invariant mass between the lepton and the b-tagged jet
\$	$\max \Delta \eta(\mathbf{b}, \mathbf{b})$	Maximum pseudorapidity separation between b-tagged jet pairs
no	$\min \Delta R(b, b)$	Minimum separation between b-tagged jet pairs
ğ	$p_T (CSV)$	pT weighted average of the combined secondary vertex discrimina-
no		tor of the non-b-tagged jets
0	FW_2	Second Fox-Wolfram moment
	centrality	Ratio of the sum of the p_T and the total energy of all jets
1ℓ	m _{ijj}	Invariant mass of the jet system composed by the first three jets
		ranked in p_T
	$m_{\rm T}(\ell, \vec{p}_{\rm T}^{\rm miss})$	Transverse mass of the system constituted by the lepton and the
	$\Delta R(\ell, bb)$	Distance between the b-tagged jet pair with the smallest ΔR separa-
		tion and the lepton
	$\langle \Delta R(\mathbf{b}, \mathbf{b}) \rangle$	Average separation between b-tagged jet pairs
	Niets	Number of selected jets
2ℓ	Nbiets	Number of selected b-tagged jets
	$\Delta R(\ell, b)$	Distance between the lepton and the b-tagged jet with largest trans-
		verse momenta
	$p_{T\ell}$	Largest p_T between the leptons
	$p_{T\ell 1} - p_{T\ell 2}$	Lepton p _T asymmetry
	$m(\ell, \mathbf{b})$	Invariant mass of the lepton+b-tagged jet system with the largest p_T
		(top guark candidate)
	mmin	The smallest of the transverse masses constructed with the lead-
	1	ing b-tagged jet and each of the two W boson hypotheses:
		$\min [m_T(\mathbf{b}, p_{T\ell 1} + \vec{p}_T^{\text{miss}}), m_T(\mathbf{b}, p_{T\ell 2} + \vec{p}_T^{\text{miss}})]$

Figure 11 Input variables used in the analysis of the single-lepton and dilepton final states.

Event Selection Machine Learning

<u>ATLAS</u>

- Neural Network (NN)
- Two fully connected layers of 64 nodes
- Activation function: rectified linear units
- Batch normalisation
- Loss function: binary-cross-entropy
- Optimizer: Adam
- Dropout at 10% rate

_		

NN variables

 $p_{\rm T}$ of the leading jet $p_{\rm T}$ of fifth leading jet Scalar sum of the $p_{\rm T}$ of all jets Second Fox–Wolfram moment calculated using all jets and leptons [97] Invariant mass of the *b*-jet pair with minimum ΔR Invariant mass of the *b*-jet pair with maximum $p_{\rm T}$ Largest invariant mass of a *b*-jet pair Invariant mass of the jet triplet with maximum $p_{\rm T}$ Invariant mass of the untagged jet-pair with minimum ΔR Average ΔR between all *b*-jet pairs in the event ΔR between the lepton and the pair of *b*-jets with smallest ΔR Centrality calculated using all jets and leptons Kinematic discriminant *D* defined in the text Number of *b*-jets (only in $\geq 6j \geq 4b$ and $\geq 6j \geq 4b$ regions)

Figure 12 Input parameters of the NN.

Event Selection Network output (Atlas)

Figure 13 Expected distributions of the NN output for different and final states and $m_{H^\pm}.$

Systematic Uncertainties

- Pileup
- Jet energy scale (JES)
- Jet energy resolution (JER)
- Uncertainty integrated luminosity (ATLAS: 1.7%, CMS: 2.5%)
- B-tagging / misstagging uncertainty
- Correction factors (CF) are applied to compensate the error
 - Control region: Hadronical/leptonical vector boson decay
- event acceptance H^\pm signal is mass dependent
 - 2% at 200 GeV
 - 8.5% at 1000 GeV
 - 6% at 2000 GeV

- Theoretical Background
- 2 The experiment
- 3 The signal process
- Analysis strategy

5 Results

6 Appendix

1. ATLAS

2. CMS jet

3. CMS lep

4. CMS combined

Results Atlas

Figure 14 NN output after fit for 200 GeV (top) and 800 GeV (bottom) $\rm m_{H^\pm}$ hypotheses in the four analysis regions.

Results Atlas

Figure 15 Observed and expected upper limits for the production of $\rm H^\pm \to tb$ in association with a top quark and a bottom quark. NN output distribution is used in maximum likelihood fit.

Results Atlas

Figure 16 Observed and expected limits on $\tan \beta = \frac{v_{\phi_1}}{v_{\phi_2}}$ as a function of $m_{H^{\pm}}$.

Results CMS jet

Figure 17 Expected event yields for the boosted analysis.

Results CMS jet

Figure 18 Excluded parameter space region in the hMSSM scenario (left) and M125($\tilde{\chi}$) (right) using the association production model. The invariant mass m_{tb} of the H^{\pm} candidate is used in a binned ML fit.

Results CMS lep

Figure 19 MVA outputs of the data and the SM expectation after the background-only fit.

Results CMS lep

Figure 20 Excluded parameter space regions.

Results CMS combinded

Figure 21 Upper limits at 95% CL on the product of the $\rm H^+$ production cross section and branching fraction as a function of $\rm m_{H^\pm}.$

$\begin{array}{l} \mbox{Conclusion} \\ \mbox{Search for } \mathrm{H}^+ \to \mathrm{tb} \end{array}$

ATLAS

- no significant excess above the expected SM background found
- $\sigma \ge \beta$ improved by 5% to 70% depending on the $m_{H^{\pm}}$

CMS

- No significant deviation is observed above the expected SM background
- for production in association with a top quark, limits of 21.3 to 0.007 pb are set for $m_{H^{\pm}}$ in the range 0.2 to 3 TeV
- tan β excluded for in the range of 0.5-2.1 for $m_{H^{\pm}}$ between 200 and 1200 GeV

References

CMS Collaboration

Search for a charged Higgs boson decaying into top and bottom quarks in events with electrons or muons in proton-proton collisions at $\sqrt{s} = 13$ TeV *Journal of High Energy Physics (2019), arXiv:1908.09206.*

CMS Collaboration

Search for charged Higgs bosons decaying into a top and a bottom quark in the all-jet final state of pp collisions at $\sqrt{s} = 13 \text{ TeV}$ Journal of High Energy Physics (2020), arXiv:2001.07763.

ATLAS Collaboration

Search for charged Higgs bosons decaying into a top quark and a bottom quark at \sqrt{s} = 13 TeV with the ATLAS detector

Journal of High Energy Physics (2021), arXiv:2102.10076.

Thank you for your attention! Special thanks to Dr. Dominik Duda

- Theoretical Background
- 2 The experiment
- 3 The signal process
- Analysis strategy
- 5 Results

6 Appendix

Further production channels

Figure 22 s-channel process.

Figure 23 Five-flavor scheme (5FS).

Event Selection Phase space restrictions

ATLAS (11+j) final state

- Exactly 1 e/μ $\square p_T > 27 GeV$
- $\begin{array}{l} \bullet \quad \nu_{e/\mu} \text{ within } \Delta R < 0.15 \\ \bullet \quad \geq 5j, \geq 2b \end{array}$

 \underline{CMS} (I+j) final state

At least 1 e/µ
 □ p_T > 35/30GeV
 p_T^{miss} > 30GeV

CMS all-jet final state

- $p_{\rm T} > 40 {\rm GeV}$
- $\ \ \, |\eta|<2.4$
- $\blacksquare H_{\rm T}^{\rm trig} < 450 \; {\rm GeV}$
- **No** e/μ with $p_{\rm T} > 10 {
 m GeV}$
- $p_{\rm T}^{\rm miss} < 200 \; {\rm GeV}$

