Study of Higgs boson properties in $H \rightarrow WW^* (\rightarrow ev\mu v) + 2$ jets events Proseminar "Physik am LHC"

Marie Pruckner

Overview

- Higgs Boson and its Production Ι.
- II. Motivation and Approach
- III. Theoretical Framework
- IV. Data Sets and Monte Carlo Predictions
- V. Object Selection
- **VI. Event Selection**
- **VII.** Uncertainties
- **VIII.** Results
- IX. Background Reduction (for future studies)

Higgs Boson

- Discovered 2012 at LHC
- Proof for Higgs Mechanism
- $m_{H} = 125.09 \pm 0.21(stat.) \pm 0.11(syst.) GeV$
- A pure CP odd Higgs boson has been excluded at more than 99.9% confidence level (CL)
- Strong hints for $J^P = 0^+$
- Some open questions:
 - SM or BSM particle?
 - CP properties of Higgs boson couplings (HVV, ggH, Hff)

https://arxiv.org/pdf/1207.7235.pdf

https://arxiv.org/pdf/1207.7214.pdf https://arxiv.org/pdf/1307.1432.pdf

http://cdsweb.cern.ch/record/2743624/files/ATLAS-CONF-2020-055.pdf

Study of Higgs Boson Production in association with two jets

Study of Higgs Boson Production in association with two jets

http://cdsweb.cern.ch/record/2743624/files/ATLAS-CONF-2020-055.pdf

$H \rightarrow WW^*(\rightarrow ev\mu v)jj$ Motivation

- ggF
 - Constrain CP properties of effective Higgs-gluon vertex (in evµvjj final state)
 - Effects from new particles in gluon-fusion loop
- VBF
 - decay
 - Strength of Higgs coupling to longitudinally polarised W boson ensures unitarity of SM
 - CP even Higgs boson is assumed
- Are there deviations from the SM expectations?

• Studying properties of the Higgs boson looking at WW decay and its production in association with two jets

Constrain Higgs boson coupling to longitudinally and transversely polarised W/Z boson in production and

$H \rightarrow WW^*(\rightarrow ev\mu v)jj$ **Experimental Approach**

- 2015 and 2016
- Using $\Delta \Phi_{ii}$ between two leading jets

 $\Delta \Phi_{ii} = \phi_{i1} - \phi_{i2}$ with $\eta_{i1} > \eta_{i2}$ and $\Delta \Phi_{ii} = \phi_{i2} - \phi_{i1}$ with $\eta_{i2} > \eta_{i1}$

 $\eta = -\ln(\tan(\theta/2))$

• Based on data collected from the ATLAS detector (36.1 fb⁻¹, \sqrt{s} = 13 TeV)

CP Violation

- Symmetry is a physical or mathematical feature of the system that is preserved or remains unchanged under some transformation
- Charge Symmetry (C); Parity Symmetry (P)
- Violation of combined CP Symmetry = CP Violation
- CP $|P\rangle = \pm \overline{|P\rangle} \rightarrow CP$ even/odd
- CP Violation in the SM: Weak interaction violates CP Symmetry
 - Meson-Antimeson oszillations, Quark mixing (V_{CKM}), Neutrino mixing (V_{PMNS})
 - Only slightly violated
- CPT Symmetry as basic principles of quantum field theory \rightarrow Time reversal symmetry also violated
- Necessary to explain the observed baryon asymmetry of the universe, but SM CP Violation is not great enough
- \rightarrow Search for new sources of CP Violation e.g. in Higgs Interaction

- **CP-even** $\kappa_{Hgg} = 1$, $\kappa_{Agg} = 0$ (**SM**)
- **CP-odd** $\kappa_{Hgg} = 0, \kappa_{Agg} = 1$
- **CP-mixed** $\kappa_{Hgg} = \frac{1}{\sqrt{2}}, \ \kappa_{Agg} = \frac{1}{\sqrt{2}}$

http://cdsweb.cern.ch/record/2743624/files/ATLAS-CONF-2020-055.pdf

scale factor for CP even interaction

 $+\kappa_{Agg}g_{Hgg}G^{a}_{\mu\nu}\tilde{G}^{a,\mu\nu}$

Theoretical Framework VBF

- Polarisation-dependent coupling-strength scale factors $a_{\rm L} = \frac{g_{HV_{\rm L}}V_{\rm L}}{g_{HVV}}$ $a_{\rm T} = \frac{g_{HV_{\rm T}}V_{\rm T}}{g_{HVV}}$
- Mixed-polarisation couplings do not contribute

$$\mathcal{L} = \underbrace{\kappa_{VV}}_{v} \left(\frac{2m_W^2}{v} H W_{\mu}^+ W^{-\mu} + \frac{m_Z^2}{v} H Z_{\mu} Z^{\mu} \right) - \underbrace{\varepsilon_{VV}}_{2v} \left(2H W_{\mu\nu}^+ W^{-\mu\nu} + H Z_{\mu\nu} Z^{\mu\nu} + H A_{\mu\nu} A^{\mu\nu} \right)$$

$$\kappa_{VV} \simeq a_{\rm L}, \quad \varepsilon_{VV} \simeq 0.5 \cdot (a_{\rm T} - a_{\rm L}) \quad \text{(Approximation based on Madgraph5_aMC@NLCC}$$

 \rightarrow SM $a_{L} = a_{T} = 1$ and $\kappa_{VV} = 1 \epsilon_{VV} = 0$

http://cdsweb.cern.ch/record/2743624/files/ATLAS-CONF-2020-055.pdf

Lorentz invariant pseudo observables

C simulations)

Theoretical Framework VBF

Event fraction

http://cdsweb.cern.ch/record/2743624/files/ATLAS-CONF-2020-055.pdf

Data Sets and Monte Carlo Predictions ggF/VBF

- ggF
 - Three different Monte-Carlo samples: CP-even, CP-odd, CP-mixed
 - $H \rightarrow WW^* \rightarrow ev\mu v$ is modelled according to SM
 - VBF is considered background
- VBF
 - For BSM helicity amplitudes are modified to account for deviations in Higgs coupling strengths
- Simulated events using \sqrt{s} = 13 TeV, passed trough full ATLAS detector simulation and overlaid with additional inelastic pp interactions (generated with PYTHIA 8) to match pile-up conditions

• Other Higgs boson decay or productions are either fixed to SM predictions or neglected (VH, $H \rightarrow \tau \tau$, $t\bar{t}H$, $b\bar{b}H$)

Process	Matrix element	UEPS	PDF set	Prediction order			
	(alternative m	lodel)		for total cross-section			
ggF	MG5_aMC@NLO v2.4.2	Pythia 8.212	NNPDF3.0 NLO	NNNLO QCD			
	$(MG5_aMC@NLO v2.4.2)$	+ Herwig 7.0.1)					
VBF $(a_{\rm L} = 1, a_{\rm T} = 1)$	MG5_aMC@NLO v $2.4.2$	Pythia 8.212	NNPDF3.0 NLO	NNLO $QCD + NLO EW$			
VBF	Powheg-Box $v2$	Рутніа 8.212	PDF4LHC15 NLO	NNLO $QCD + NLO EW$			
	$(MG5_aMC@NLO v2.3.3)$	+ Pythia 8.212)					
	(Powheg-Box v2 + H)	IERWIG $7.0.1$)					
VH	Powheg-Box v2	Pythia 8.186	PDF4LHC15 NLO	NNLO $QCD + NLO EW$			
$t\overline{t}$	Powheg-Box v2	Pythia 8.210	NNPDF3.0 NLO	NNLO+NNLL QCD			
	(Sherpa v2.	2.1)					
	(Powheg-Box v2 + H)	IERWIG $7.0.1$)					
Wt	Powheg-Box $v2$	Pythia 6.428	CT10	NLO QCD			
	$(MG5_aMC@NLO v2.2.2)$	2 + Herwig(++)					
	(Powheg-Box v2 +)	HERWIG++)					
$WZ/\gamma^{\star},~ZZ/\gamma^{\star}$	Sherpa v2.	2.2	NNPDF3.0 NNLO	NLO QCD			
	$(MG5_aMC@NLO v2.3.3)$	+ Pythia 8.212)					
$W\gamma, Z\gamma$	Sherpa v2.	2.2	NNPDF3.0 NNLO	NLO QCD			
	$(MG5_aMC@NLO v2.3.3)$	+ Pythia 8.212)					
$qq, qg \rightarrow WW$	Sherpa v2.	2.2	NNPDF3.0 NNLO	NLO QCD			
	$(MG5_aMC@NLO 2.3.3 -$	+ Pythia 8.212)					
$gg \to WW$	Sherpa v2.	1.1	CT10	NLO QCD			
Z/γ^{\star}	Sherpa v2.	2.1	NNPDF3.0 NNLO	NNLO QCD			
	$(MG5_aMC@NLO v2.2.2)$	+ Pythia 8.186)					

http://cdsweb.cern.ch/record/2743624/files/ATLAS-CONF-2020-055.pdf

relevant background

Object Selection Electron

- system
- Events triggered using single-lepton and dilepton triggers
 - p_T 24-26 GeV for single-electron trigger
 - $p_T > 17$ GeV for dilepton trigger required
- $|\eta| < 2.47$ excluding $1.37 < |\eta| < 1.52$
- Hadrons and soft leptons from heavy-flavour decays are misidentified as prompt leptons
- \rightarrow Identification efficiency 88%-94%
- Removed if reconstructed μ shares ID track
- Removed if within $\Delta R = \min(0.4, 0.04+10 \text{ GeV/p})$ of axis of surviving jet

$\eta = -\ln(\tan(\theta/2))$

• Reconstructed from tracks in the inner tracking detector matched to energy deposits in den EM calorimeter

Object Selection Muon

- spectrometer
- Events triggered using single-lepton and dilepton triggers
 - p_T 20-26 GeV for single-muon trigger
 - $p_T > 14$ GeV for dilepton trigger
- $|\eta| < 2.5$
- Hadrons and soft leptons from heavy-flavour decays are misidentified as prompt leptons •
- \rightarrow Identification efficiency close to 95%
- Removed if within $\Delta R = min(0.4, 0.04+10GeV/pT)$ of axis of surviving jet •

• Reconstructed from combined tracks using information from inner tracking detector and muon

Object Selection Jets

- system (using anti-k_t algorithm)
- Four-momentum is corrected with scale factors (p_T , η dependent)
- $|\eta| < 4.5$ and $p_T > 30$ GeV
- B jets identified with MV2c10 b-tagging algorithm (efficiency of 85%)
- Discarded if within a cone $\Delta R = 0.2$ around e candidate
- Discarded if less than 3 associated tracks within cone $\Delta R = 0.2$ around μ candidate

Reconstructed from noise-suppressed topological cluster of energy deposits in calorimeter

 Two classifiers (based on calorimeter & tracking information and jet shapes & topological jet correlations in pile-up interactions) to reduce contamination from jets from pile-up vertices

Event Selection

Events consistent with $H (\rightarrow WW \rightarrow ev\mu v) + 2$ jets are selected

	ggF + 2 jets	VBF					
	Two isolated, different-flavour leptons $(\ell = e, \mu)$ with opposite charge						
Preselection	$p_{\mathrm{T}}^{\mathrm{lead}} > 22 \; GeV, p_{\mathrm{T}}^{\mathrm{sublead}} > 15 \; GeV$						
	$m_{\ell\ell} > 10~GeV$						
	$N_{ m jet} \geq 2$						
Background rejection	$N_{b-jet,(p_T>20}$	$_{\rm GeV} = 0$					
	$m_{\tau\tau} < 66$	${ m GeV}$ rejects events with additional jets (pT>					
	$\Delta R_{jj} > 1.0$	in rapidity gap between 2 leading					
	$p_{\mathrm{T},\ell\ell} > 20 \; GeV$	central jet veto					
	$m_{\ell\ell} < 90 \; GeV$	outside lepton veto					
	$m_{\rm T} < 150 \; GeV$	requires II within rapidity gap between 2 lease					
BDT input variables	$m_{\ell\ell}, m_{\mathrm{T}}, p_{\mathrm{T},\ell\ell}, \Delta \phi_{\ell\ell}$	$ \qquad \qquad$					
	$\min \Delta R(\ell_1, j_i), \min \Delta R(\ell_2, j_i)$	$\int_{\ell} \sum_{\ell} C_{\ell}, \sum_{\ell,j} m_{\ell,j}, p_{\mathrm{T}}^{\mathrm{tot}}$					

"Boosted decision trees"

Boosted Decision Trees Maschine Learning

- on those features
- Boosting: Method of combining many weak learners trees into a strong classifier, the tree's output is given a weight relative to its accuracy
- Benefits: Fast, Easy to tune, Not sensitive to scale, Good performance

https://www.nikhef.nl/~h71/Lectures/2015/ppll-cpviolation-29012015

Decision tree: Takes set of input features and splits input data recursively based

Event Selection ggF

http://cdsweb.cern.ch/record/2743624/files/ATLAS-CONF-2020-055.pdf

Event Selection VBF

Event Selection Background

 $\frac{\text{Control r}}{\text{top C}}$ $Z \to \tau \tau$ WW C

- Control Regions
 - Excluded to the signal region
 - Used for normalisation of most dominant background processes
 - Different CRs for different backgrounds
- Low contributing backgrounds estimated with MC simulation
- Misidentified leptons backgrounds estimated by scaling a control sample (events with one identified and one anti-identified lepton) via extrapolation factors (p_T and η dependent, ratio identified l/anti-identified l)

region	ggF + 2 jets	VBF					
CR	$N_{b-\text{jet},(p_{\rm T}>30 \; GeV)} = 1$	$N_{b-\text{jet},(p_{\text{T}}>20\ GeV)} = 1$					
- CB	$\left m_{\tau\tau} - m_Z\right \le 25 \; GeV$						
	$p_{\mathrm{T},\ell\ell}$ requirement is omitted	$m_{\ell\ell}$; 80 GeV					
CB	$m_{\ell\ell} > 90 \; GeV$						
UΠ	$m_{\rm T}$ requirement is omitted						

Event Selection Background

ggF

http://cdsweb.cern.ch/record/2743624/files/ATLAS-CONF-2020-055.pdf

https://arxiv.org/pdf/1808.09054

Uncertainties

- Experimental
 - estimation of misidentified lepton background
- Theoretical
 - generators and UEPS models
 - Most significant: Modelling t, WW background, ggF process
 - ggF and VBF dominated by statistical uncertainties

• B-tagging efficiency, jet energy scale and resolution, pile-up activity modelling,

• Modelling uncertainties, assessed by comparing nominal and alternative event

Uncertainties ggF

Source	$\Delta \left(\kappa_{Agg} / \kappa_{Hgg} \right)$
Total data statistical uncertainty	0.4
SR statistical uncertainty	0.33
CR statistical uncertainty	0.10
MC statistical uncertainty	0.14
Total systematic uncertainty	0.28
Theoretical uncertainty	0.23
Top quark bkg.	0.15
ggF signal	0.14
$WZ, ZZ, W\gamma, Z\gamma$ bkg.	0.06
WW bkg.	0.06
Z/γ^* bkg.	0.016
VBF bkg.	0.015
Experimental uncertainty	0.21
b-tagging	0.16
Modelling of pile-up	0.10
Jets	0.07
Misidentified leptons	0.04
Luminosity	0.034
Total	0.5

VBF

Source	$\Delta \kappa_{VV}$
Total data statistical uncertainty	0.11
SR data statistical uncertainty	0.10
CR data statistical uncertainty	0.019
MC statistical uncertainty	0.035
Total systematic uncertainty	0.12
Theoretical uncertainty	0.10
Top quark bkg.	0.072
WW bkg.	0.062
ggF bkg.	0.022
Z/γ^* bkg.	0.017
VBF signal	0.019
Experimental uncertainty	0.050
<i>b</i> -tagging	0.014
Jet	0.026
Misidentified leptons	0.041
Luminosity	0.011
Total	0.17

Results Events / bin ggF 1. Signal strength parameter measured signal $\mu^{\text{ggF+2jets}} =$ SM predicted signal Data / pred.

→
$$\mu^{\text{ggF+2jets}} = 0.5 \pm 0.4(\text{stat.})^{+0.7}_{-0.6}(\text{syst.})$$

→ Consistent with SM prediction

http://cdsweb.cern.ch/record/2743624/files/ATLAS-CONF-2020-055.pdf

Results ggF

- 2. BSM effects in effective Higgs-gluon coupling $(\kappa_{Agg}/\kappa_{Hgg})$
 - a) Normalisation is unconstrained → only shape information of fit input distribution to distinguish between CP scenarios
 - → Not sensitiv enough to provide 68% CL
 - b) Normalisation is constrained to model predictions \rightarrow shape and rate information
 - $\rightarrow \kappa_{Agg}/\kappa_{Hgg} = 0.0 \pm 0.4(\text{stat.}) \pm 0.3(\text{syst.})$

→ No 95% CL

→ Consistent with SM prediction

http://cdsweb.cern.ch/record/2743624/files/ATLAS-CONF-2020-055.pdf

Results ggF

- Weighted by $ln(1+N_S/N_B)$, N_{S/B}: post-fit signal/ background event yield
- Signal and background yields fixed from shape and rate $\kappa_{Agg}/\kappa_{Hgg}$ fit

Results ggF

information

3. Simultaneous fit of κ_{Hgg} and κ_{Agg} , \triangleleft exploiting shape and rate

- → Consistent with SM prediction

http://cdsweb.cern.ch/record/2743624/files/ATLAS-CONF-2020-055.pdf

- Fits with a_L , a_T and κ_{VV} , ε_{VV} parametrisation
- One dimensional fits
 - a) Using shape dependence, other parameter fixed to SM value
 - b) Using shape and rate information, other parameter fixed to SM value
- 2. Fits on one parameter, other being profiled
- a_L , κ_{VV} sensitive to total event yield
- a_T , ε_{VV} sensitive to $\Delta \Phi_{ii}$ shape
- information about polarisation of fusing gauge boson

• Kinematic distribution of 2 jets related to structure of Higgs boson production vertex, carry

- Weighted by $ln(1+N_S/N_B)$, N_{S/B}: post-fit signal/ background event yield
- Signal and background yields fixed from shape and rate ε_{VV} fit

http://cdsweb.cern.ch/record/2743624/files/ATLAS-CONF-2020-055.pdf

shape+rate, profiled ε_{VV}

http://cdsweb.cern.ch/record/2743624/files/ATLAS-CONF-2020-055.pdf

$\kappa_{VV} \simeq a_{\rm L}$, $\varepsilon_{VV} \simeq 0.5 \cdot (a_{\rm T} - a_{\rm L})$

shape+rate, profiled κ_{VV}

32

Type

- κ_{VV} shape-only fit (ε
- ε_{VV} shape-only fit (κ_V
- κ_{VV} shape + rate fit (
- ε_{VV} shape + rate fit (
- κ_{VV} shape + rate fit (ε_V
- ε_{VV} shape + rate fit (κ_V

Type

- $a_{\rm L}$ shape-only fit $(a_{\rm T})$
- $a_{\rm T}$ shape-only fit ($a_{\rm I}$
- $a_{\rm L}$ shape + rate fit (a
- $a_{\rm T}$ shape + rate fit (a
- $a_{\rm L}$ shape + rate fit ($a_{\rm T}$
- $a_{\rm T}$ shape + rate fit ($a_{\rm L}$

Results VBF

$$\kappa_{VV} \simeq a_{\rm L}, \quad \varepsilon_{VV} \simeq 0.5 \cdot (a_{\rm T} - a_{\rm L})$$

→ Consistent with SM prediction

	exp.	obs.
$\varepsilon_{VV} = 0$		
$_{VV} = 1$)	$0.00^{+0.23}_{-0.25}$ (stat.) $^{+0.17}_{-0.20}$ (syst.)	$0.14^{+0.39}_{-0.22}(\text{stat.})^{+0.18}_{-0.13}(\text{syst.})$
$(\varepsilon_{VV}=0)$	$1.00^{+0.08}_{-0.10}(\text{stat.})^{+0.08}_{-0.12}(\text{syst.})$	$0.91^{+0.09}_{-0.12}(\text{stat.})^{+0.09}_{-0.17}(\text{syst.})$
$\kappa_{VV} = 1$)	$0.00^{+0.18}_{-0.24}$ (stat.) $^{+0.10}_{-0.13}$ (syst.)	$0.09^{+0.13}_{-0.16}$ (stat.) $^{+0.06}_{-0.07}$ (syst.
$_{VV}$ profiled)	$1.00^{+0.08}_{-0.10}(\text{stat.})^{+0.08}_{-0.12}(\text{syst.})$	$0.90^{+0.10}_{-0.18}$ (stat.) $^{+0.09}_{-0.16}$ (syst.)
VV profiled)	$0.00^{+0.22}_{-0.24}$ (stat.) $^{+0.11}_{-0.15}$ (syst.)	$0.13^{+0.28}_{-0.20}$ (stat.) $^{+0.08}_{-0.10}$ (syst.

	exp.	obs.
$_{\Gamma}=1)$		
$_{L} = 1)$	$1.00 \pm 0.5 (\text{stat.})^{+0.35}_{-0.39} (\text{syst.})$	$1.27^{+0.8}_{-0.4}(\text{stat.})^{+0.35}_{-0.27}(\text{syst.})$
$a_{\mathrm{T}} = 1$)	$1.00^{+0.08}_{-0.10}(\text{stat.})^{+0.08}_{-0.13}(\text{syst.})$	$0.90^{+0.10}_{-0.13} \text{ (stat.)}^{+0.09}_{-0.19} \text{ (syst.)}$
$a_{\rm L} = 1)$	$1.00^{+0.36}_{-0.49}$ (stat.) $^{+0.22}_{-0.32}$ (syst.)	$1.18^{+0.26}_{-0.31}$ (stat.) $^{+0.14}_{-0.16}$ (syst.)
profiled)	$1.00^{+0.08}_{-0.10}(\text{stat.})^{+0.08}_{-0.13}(\text{syst.})$	$0.91^{+0.10}_{-0.18}(\text{stat.})^{+0.09}_{-0.18}(\text{syst.})$
profiled)	$1.00^{+0.38}_{-0.5}$ (stat.) $^{+0.22}_{-0.43}$ (syst.)	$1.16 \pm 0.4 (\text{stat.})^{+0.4}_{-0.3} (\text{syst.})$

Summary

- ggF $\kappa_{Agg}/\kappa_{Hgg} = 0.0 \pm 0.4(\text{stat.}) \pm 0.3(\text{syst.})$ $\mu^{\text{ggF+2jets}} = 0.5 \pm 0.4(\text{stat.})^{+0.7}_{-0.6}(\text{syst.})$
- VBF $a_{\rm L} = 0.91^{+0.10}_{-0.18}$ (stat.) $^{+0.09}_{-0.18}$ (syst.) $a_{\rm T} = 1.16 \pm 0.4$ (stat.) $^{+0.4}_{-0.3}$ (syst.)

 $\kappa_{VV} = 0.90^{+0.10}_{-0.18} (\text{stat.})^{+0.09}_{-0.16} (\text{syst.})$ $\epsilon_{VV} = 0.13^{+0.28}_{-0.20} (\text{stat.})^{+0.08}_{-0.10} (\text{syst.})$

- All results are consistent with the SM within their uncertainties \rightarrow CP even Higgs boson
- Reduce uncertainties to get more precisely results
 - Data statistic \rightarrow More data
 - Top modelling uncertainties → Reduce top quark background

Reducing Top Background How?

- Top quarks nearly always decay into bottom quarks
- B Tagging: Identify jets originating from b quarks

 \rightarrow Veto against those b jets for this study

- So far b jets with $p_T > 20$ GeV were tagged
- Why do top quarks still come through?
 - Jets weren't found/identified
 - Jets with $|\eta| > 2.5$ (outside of tracking detector)
 - Jets with $p_T < 20$ GeV

https://favpng.com/png_view/ jet-particle-physics-jet-b-tagging-bottom-quark-png/dMKWPMmA

Reducing Top Background

Reducing Top Background Number of B Jets

В	Jets	B Tagging Efficiency															
		100 % B Jets in Bin [%]				90 % B Jets in Bin [%]				85 % B Jets in Bin [%]							
	η < 2.5																
istics	pt > 10 GeV	5.50	33.92	57.01	3.36	0.21	9.52	40.65	47.11	2.60	0.12	11.65	43.61	42.62	2.01	0.11	
	pt > 20 GeV	6.59	36.56	54.09	2.64	0.12	10.87	42.49	44.54	2.03	0.07	12.97	45.27	40.12	1.57	0.07	
	pt > 30 GeV	10.11	42.38	45.97	1.48	0.06	15.07	46.03	37.76	1.11	0.03	17.13	48.01	33.95	0.88	0.03	
acter	10 GeV < pt < 30 GeV	81.50	17.17	1.28	0.05	0.00	83.02	15.84	1.10	0.04	0.00	84.27	14.83	0.87	0.03	0.00	
B Jet Chara	20 GeV < pt < 30 GeV	86.54	12.78	0.67	0.02	0.00	87.65	11.79	0.54	0.02	0.00	88.66	10.84	0.48	0.01	0.00	
	η > 2.5							,									
	pt > 10 GeV	87.51	11.60	0.89	0.00	0.00	88.62	10.59	0.79	0.00	0.00	89.30	10.12	0.58	0.00	0.00	
	pt > 20 GeV	88.52	10.81	0.66	0.00	0.00	89.55	9.86	0.59	0.00	0.00	90.17	9.39	0.43	0.00	0.00	
	pt > 30 GeV	90.86	8.66	0.48	0.00	0.00	91.70	7.86	0.44	0.00	0.00	92.12	7.56	0.32	0.00	0.00	

- Reducing the background can be improved by
 - Also tagging b jets with $p_T > 10 \text{ GeV}$
 - Reach a 90% efficiency
 - access also $|\eta| > 2.5$

Thank you for your attention Special Thanks to Dominik Duda

