Investigation and improvements of the behavior of sMDT chambers in the environment of high gamma radiation conditions Proseminar: Physics at the Large Hadron Collider

> Bastian Wesely July 19th, 2021

# Outline

- 1. Motivation
  - a) LHC-overview
  - b) Future collider experiments
  - c) sMDT chambers for muon precision tracking
  - d) High-rate performance of sMDT chambers
- 2. Topic of the bachelorthesis: Measurement of the high-rate performance with sMDT chambers using a new ASD chip
  - a) Preparatory studies with simulated data
  - b) Teast beam measurement with GIF++ @CERN
- 3. Summary and outlook



- PS
- SPS

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE - Radioactive EXperiment/High Intensity and Energy ISOLDE // LEIR - Low Energy Ion Ring // LINAC - LINear ACcelerator // n-ToF - Neutrons Time Of Flight // HiRadMat - High-Radiation to Materials // CHARM - Cern High energy AcceleRator Mixed field facility // IRRAD - proton IRRADiation facility // GIF++ - Gamma Irradiation Facility // CENF - CErn Neutrino platForm

#### HL-LHC

Physics motivation

a) Precision measurement of the properties of the SM Higgs boson

b) Search for physics beyond the SM, e.g. search for supersymmetry and dark matter

– Upgrade of the LHC to the HL-LHC:

a) With the existing dipole magnets no increase of the centre-of-mass energy possible

b) But almost tenfold increase of the instantaneous luminosity will provide sensitivity to rare processes and collisions at high centre-of-mass energies in the parton-parton system

c) Increased luminosity will lead to increase particle fluences in the LHC detectors

- Therefor: Upgrade all the LHC detectors necessary



# Future Circular Collider (FCC)

- Planned for post-LHC-era
- Circumference: 100km
- Centre-of-mass energy: 100 TeV
- 16 T field strength



## ATLAS-Detector

- ATLAS: A Toroida LHC
  ApparatuS
- Multiple layers of different detectors
- Forward-backwardsymmetric architecture
- Three main subsystems of detector types: inner tracker, the calorimeter system and the muon spectrometer



#### Muon Spectrometer

- occupies the largest volume of the ATLAS detector
- superconducting toroidal magnets provide a magnetic field of approx. 0.5 T
- bent particle trajectories measurements are performed by precision monitored drift tube (MDT) detectors
- MDT detectors contain 6-8 layers of single drift tubes with 30 mm diameter



# sMDT chambers for muon precision tracking

- BIS sector of muon spectrometer is updated: MDT -> sMDT
- Main difference: diameter reduction from 30 mm to 15 mm
- Apart from gain in physical space: better performance at high background irradiation
- Muon chambers consist of many tubes mounted together (4 layers + spacer)





| Parameter                              | MDT                       | sMDT                      |
|----------------------------------------|---------------------------|---------------------------|
| Tube material                          | Aluminium                 | Aluminium                 |
| Tube outer diameter                    | 29.97 mm                  | 15.00 mm                  |
| Tube wall thickness                    | 0.4 mm                    | 0.4 mm                    |
| Wire material                          | W-Re, gold plated         | W-Re, gold plated         |
| Wire diameter                          | 50 µm                     | 50 µm                     |
| Gas mixture                            | Ar/CO <sub>2</sub> (93/7) | Ar/CO <sub>2</sub> (93/7) |
| Gas pressure                           | 3 bar (abs.)              | 3 bar (abs.)              |
| Gas gain                               | $2 \times 10^{4}$         | $2 \times 10^{4}$         |
| Wire potential                         | 3080 V                    | 2730 V                    |
| Maximum drift time                     | 720 ns                    | 190 ns                    |
| Wire positioning acccuracy             | 20 µm RMS                 | 10 µm RMS                 |
| Spatial resolution*                    |                           |                           |
| without background irradiation         | 83 µm                     | 106 µm                    |
| 280 Hz/cm <sup>2</sup> background rate | 115 µm                    | 108 µm                    |
| Efficiency*                            |                           |                           |
| without background irradiation         | 95%                       | 94%                       |
| 65 kHz/tube counting rate              | 86%                       | 92%                       |

# Working principle of sMDT chambers

- Charged particle (muon) passes through the detector
- Ionization of gas atoms inside the chamber
- Electric field between cathode and anode affects the particles
- electrons close to the anode wire (strong electric field): gained enough energy to ionize other atoms
- The process multiplies → avalanche of ionized electrons
- measurable pulse on the electrodes



# High-rate performance of sMDT chambers

- High background counting rates expected @HL-LHC
- Muon chambers will be exposed to a large background of gamma rays
- delta-electrons are created via compton scattering when a photon hits the tube wall
- Slow drift of the ions from the avalanche at the anode wire to tube walls (1ms)
- modification of the electrical field inside the tube leading to:
  - 1) Space charge fluctuations
  - 2) Deat time effect
  - 3) a reduction of the gas gain (Gain Drop)





#### Bachelor's Thesis: Measurement of the high-rate performance with sMDT chambers using a new ASD chip

## Preparatory studies with simulated data

- idea: simulate behavior of a single sMDT chamber with high gamma background radiation using Garfield++
- Ionization process + drift of electrons can be simulated really precisely
- Settings:
  - 1) inner tube radius: 7.1 mm
  - 2) radius of anode wire: 0.025 mm
  - 3) gasmixture in the tube: Ar/CO2 (ratio: 93/7)
  - 4) voltage: 2730 V
  - 5) pressure of gas: 3000 mbar
  - 6) temperature of gas: 24 °C



#### Motivation for test beam measurements



- Experiment is located in the "Experimental Hall North" (EHN)
- Beam production: protons from SPS shot at tungstic target, creation of pions which decay to muons
- radioactive Caesium source positioned directly in the muon beam: simulation of a high gammabackground expected at HL-LHC
- Angular correction filter





LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE - Radioactive EXperiment/High Intensity and Energy ISOLDE // LEIR - Low Energy Ion Ring // LINAC - LINear ACcelerator // n-ToF - Neutrons Time Of Flight // HiRadMat - High-Radiation to Materials // CHARM - Cern High energy AcceleRator Mixed field facility // IRRAD - proton IRRADiation facility // GIF++ - Gamma Irradiation Facility // CENF - CErn Neutrine platForm

- Experiment is located in the "Experimental Hall North" (EHN)
- Beam production:
- radioactive Caesium source positioned directly in the muon beam: simulation of a high gammabackground expected at HL-LHC
- Angular correction filter









- Adjustment of irridation filter (cf. matrix)
- Taking as many data as possible with different levels of gamma radiation
- Approximate duration of a data taking run per filter: 50min -2h
- Goal: achieving at least 100.000 events per run

|   | Α     | В     | С   |
|---|-------|-------|-----|
| 1 | 1.0   | 1.0   | 1.0 |
| 2 | 10.0  | 1.5   | 2.2 |
| 3 | 100.0 | 100.0 | 4.6 |



# Summary and outlook

- Due to increasing luminosities at HL-LHC all detector systems ned to be updated and adjusted
- Good chance of sMDT chambers to be able to cope with increasing background radiation
- Reduced tube diameter: strongly reduced drift time and thus dead time and 8x reduced gain drop
- Elimination of space charge fluctuations due to nearly linear r(t) relation in regime of Ar/CO2
- During the week of test beam much data can be taken in order to guarantee proper statistics (compared to cosmic muons)
- Analysis of the taken data, especially concerning spatial resolution and efficiency at different levels of radiation
- Comparison to simulated data