

The AWAKE Experiment and Simulations of Self-Modulation

Pablo I. Morales Guzman

Max Planck Institute for Physics, Munich, Germany

IMPRS Young Scientist Workshop 2022

9 - 13th May 2022

pmorales@mpp.mpg.de

Contents

- Wakefields introduction
 - AWAKE (Advanced Proton Driven Plasma Wakefield Acceleration Experiment)
 - Use plasma for acceleration
 - Self-modulation
- Particle-in-cell (PIC) simulations in wakefield physics
- My project: e- bunch seeding from inside the p+ bunch
 - e- bunches expelled
 - transverse momentum of p+
 - effect of e- charge on seeding
- Conclusions
- Virtual visit

Plasma

- Fourth state of matter: free e- and ions
- AWAKE case \rightarrow cold neutral plasma, e- and ions at rest
- Ions are heavy \rightarrow ignore their motion

AWAKE helicon plasma cell R&D lab, cern.ch

Why plasma?

Conventional acceleration cavities

 At the material limit → accelerating gradient = 100 MV/m

Broeck (2019), Robotic solutions – RF cavities visual inspection system P I Morales Guzmán | AWAKE | IMPRS Young Scientist Workshop 2022

Plasma wakefield acceleration

- Acceleration gradient = 100 GV/m
- Three orders of magnitude increase

Simulation picture of the p+ beam (yellow) forming bunches under the action of the plasma field. e- can be accelerated on these "waves" (Image: J. Vieira)

Wakefields driven by a proton bunch

- p+ bunch attracts plasma e- transversely
- Plasma e- concentrate on axis and repel each other
- Then they are pulled back to axis by the ion background

Self-modulation

The idea behind AWAKE

N.Kumar et al (2010) Phys. Rev. Lett. 104, 255003

Self-modulation (SM) process

- Bunch with a steep cut in the density profile drives seed wakefields
- p+ are repelled or attracted to the axis due to the focusing and defocusing fields

Self-modulation (SM) process

- The modulation of the p+ bunch makes the plasma e- more attracted to the axis
 - \rightarrow feedback loop: p+ completely expelled from or focused to the axis.
 - \rightarrow train of microbunches separated by $\sim \lambda_p$,
 - coherently drives wakefields

SM in simulations

P I Morales Guzmán | AWAKE | IMPRS Young Scientist Workshop 2022

Simulations and my work

Solve numerically Newton equations of motion and Maxwell equations to describe the plasma processes.

Particle-in-cell (PIC) simulations

 $(\boldsymbol{\rho}_i, \boldsymbol{j}_i) \rightarrow \boldsymbol{B}_i, \boldsymbol{E}_i$

apply Maxwell's

equations

 $\frac{\partial \boldsymbol{E}}{\partial t} = c^2 \vec{\nabla} \times \boldsymbol{B} - \frac{\mu_0}{\epsilon_0} \boldsymbol{j}$ $\frac{\partial \boldsymbol{B}}{\partial t} = -\vec{\nabla} \times \boldsymbol{E} \qquad \frac{\rho}{\epsilon_0} = \vec{\nabla} \cdot \boldsymbol{E}$

- Particles placed inside cells
- Density, current, and fields calculated on the grid
- Particles pushed

My work in run 2a

- Simulations and experiment
 - e- bunch seed inside the p+ bunch
 - Laser pulse (density cut) propagating ahead of the e- bunch
- Simulations
 - Measure the e- bunch seeding by sending two simulations, one of them with a shift of $\lambda_{pe}/2$ and measuring the dephasing of the wakefields and microbunches in z = 10 m
- Understand the conditions under which the ebunch seeds
- Understand the interaction of two selfmodulating parts coming from different seeds

Electron bunch is expelled from axis early in the plasma

 ξ (cm)

- e- bunch is subject to the defocusing seed wakefields of the p+ bunch (density cut + adiabatic response)
- In this case, it was expelled at $z \approx 60 \text{ cm}$
 - density cut $2\sigma_z$ ahead of bunch center
 - e- bunch 1cm behind density cut
- No radial modulation
- No wakefields from e- bunch
- \rightarrow Does it seed?

Electron bunch leaves momentum imprint

- e- bunch leaves a transverse momentum imprint on the p+ bunch
- If the momentum imprint is high enough, the radial modulation will follow it, despite the seed wakefields from the density cut

Phase by the end of the plasma low charge (100 pC)

- Low e- bunch charge \rightarrow low amplitude wakefields
 - \rightarrow not enough momentum is transferred to p+
 - \rightarrow no seeding: phase along the bunch is independent of the e- bunch

Phase by the end of the plasma high charge (550 pC)

• High e- bunch charge \rightarrow high amplitude wakefields

→ momentum is transferred to p+, even though e- bunch is quickly expelled from axis ($z \approx 80$ cm)

 \rightarrow seeding: phase of microbunches and wakefields depend on e- bunch

Conclusions

- AWAKE: experiment that uses wakefields driven by a p+ bunch to accelerate e- bunches
- Simulations can ...
 - support and explain experimental results, by showing parts of the process not accessible in the experiment
 - make predictions when theoretical solutions have no analytical form
- My current project explores the conditions in which there is seeding or not, and predicts what could be observed in the experiment
 - The e- bunch is expelled from the axis early in the plasma when propagating inside the p+ bunch.
 - e- bunches seed by modulating the transverse momentum of the p+ bunch.
 - e- bunches seed when they have sufficient charge

Virtual visit

https://my.matterport.com/show/?m=21e5ne2M9TV

AWAKE - facility

AWAKE Collaboration, Nature 561, (2018)

٠

٠

Future runs (run 2c)

AWAKE Collaboration, unpublished

Driving wakefields

• Effectively? $W_{z}(\xi) = K \int_{-\infty}^{\xi} n_{b} \cos[k_{pe}(\xi - \xi')] d\xi'$

All particles must be in the decelerating phase \rightarrow bunch must be ~ $\frac{1}{2} \lambda_{pe}$ long.

High energy p+ bunch are much larger than $\lambda_{pe}!$

 \sim 7.5 cm \gg \sim 1 mm

What to do?

Driving wakefields

- To highest energies in one stage
- Energy gained by witness bunch ≤ energy lost by driver bunch

Energy carried by:		
Laser pulse	≈ 10s J, < 100 fs	
e- bunch	≈ 10s J, < 1 ps	 Short plasma stage with high gradient
p+ bunch	≈ 10s kJ, ≈ 1 ns	Very long plasma stage, but small gradient

Frankers and the second second

How to use large energy from a long p+ bunch?

Maximum fields amplitude is on the order of the wave-breaking fields, which scales with the inverse of the length of the beam

$$E_{wb} = \frac{m_e c \omega_{pe}}{e} = \frac{2\pi m_e c^2}{e \lambda_{pe}} \approx \frac{1}{\sigma_z}$$