Computing Scattering Amplitudes in N=4 SYM without knowing Feynman diagram

Young Scientists Workshop 2022

Won Lim

Contents

- Motivation
- Bootstrapping
- Amplituhedron
- Perturbation from $\mathrm{N}=4 \mathrm{SYM}$?

Motivation
 Why not Feynman diagram?

- Feynman diagram calculations are inefficient to study multi-loop scattering amplitudes especially in a theory as simple as planar $\mathrm{N}=4$ super-Yang-Mills (SYM) theory.
- Gauge theories have numerous cancellations

Motivation

Why N=4 Super Yang-Mills Theory?

Fundamental Properties

- Maximally supersymmetric Yang-Mills model.
- UV finite to all orders mandelstam (1982)
$\rightarrow \beta$-function is zero for all couplings. (Scale Invariant, Theory is conformal)
- AdS/CFT correspondence
+ Sharing Yang-Mills sector with QCD, having the same gluon diagrams.
\Rightarrow Good starting Point to study QCD

The Soft-Collinear Bootstrap

Further properties at 't Hooft limit

```
Assumptions
1.Planarity
2.Dual Conformal Invariance
3.IR property
```

- Using knowledge of IR behavior of the theory in addition to the planarity and dual conformal invariance, one can get the scattering amplitudes without drawing Feynman diagram.

Planarity

- Planar graph has no crossing edges.

Dual Conformal Invariance

- Conformal invariance in dual space defined by $p_{i}^{\mu}=x_{i}^{\mu}-x_{i+1}^{\mu}$
- Conformal transformation : \{Inversion, Translation, dilation, rotation\}

Dual Conformal Invariance

Example - Box diagram

$$
x_{i j}=x_{i}-x_{j}
$$

- Integral in dual coordinates of box diagram $M_{\mathrm{box}}=\int d^{4} x_{A} \frac{N}{x_{1 A}^{2} x_{2 A}^{2} x_{3 A}^{2} x_{4 A}^{2}}$
- Under inversion $M_{\mathrm{box}} \rightarrow \int \frac{d^{4} x_{A}}{\left(x_{A}^{2}\right)^{4}} \frac{N^{\prime} x_{1}^{2} x_{2}^{2} x_{3}^{2} x_{4}^{2}\left(x_{A}^{2}\right)^{4}}{x_{1 A}^{2} x_{2 A}^{2} x_{3 A}^{2} x_{4 A}^{2}}$ as $x_{i j}^{2} \rightarrow \frac{x_{i j}^{2}}{x_{i}^{2} x_{j}^{2}}$
- Setting normalization factor $N=x_{13}^{2} x_{24}^{2}$, under inversion $N^{\prime}=\frac{x_{13}^{2} x_{24}^{2}}{x_{1}^{2} x_{2}^{2} x_{3}^{2} x_{4}^{2}}$

$$
M_{\mathrm{box}} \rightarrow \int \frac{d^{4} x_{A}}{\left(x_{R^{2}}^{2} x^{4}\right.} \frac{x_{13}^{2} x_{24}^{2}}{x_{1}^{2}\left(x_{2}^{2} x_{3}^{2} x^{2} / 4\right.} \frac{x_{1}^{2} x^{2} / x_{3}^{2} x_{4}^{2}\left(x_{R}^{2}\right)^{4}}{x_{1 A}^{2} x_{2 A}^{2} x_{3 A}^{2} x_{4 A}^{2}}=M_{\mathrm{box}}
$$

\Longrightarrow The Box diagram integral is invariant under dual conformal transformation

Dual Conformal Invariance

Example - Triangle diagram

- Triangle diagram $M_{\mathrm{tri}}=\int d^{4} x_{A} \frac{N^{\prime}}{x_{24}^{2} x_{2 A}^{2} x_{3 A}^{2} x_{4 A}^{2}}$
- Under inversion $M_{\mathrm{tri}} \rightarrow \int \frac{d^{4} x_{A}}{\left(x_{A}^{2}\right)^{4}} \frac{N^{\prime}\left(x_{2}^{2}\right)^{2} x_{3}^{2}\left(x_{4}^{2}\right)^{2}\left(x_{A}^{2}\right)^{3}}{x_{24}^{2} x_{2 A}^{2} x_{3 A}^{2} x_{4 A}^{2}}$

$$
\text { Remaining } x_{A}^{2} \text { in denominator }
$$

\Rightarrow Triangle diagram is not dual conformal invariant

IR exponentiation

$$
\begin{array}{ll}
M_{n}^{(L)}=A_{n}^{(L)} / A_{n}^{(0)} \quad D=4-2 \epsilon \\
M_{n}^{(L)}=\mathcal{O}\left(\epsilon^{-2 L}\right)
\end{array}
$$

$$
\log \left[1+\lambda M_{n}^{(1)}+\lambda^{2} M_{n}^{(2)}+\ldots\right]=\mathscr{O}\left(\epsilon^{-2}\right)
$$

$$
\left(\log M_{n}\right)^{(1)}=M_{n}^{(1)}
$$

$$
\left(\log M_{n}\right)^{(2)}=M_{n}^{(2)}-\frac{1}{2}\left(M_{n}^{(1)}\right)^{2}
$$

$$
\left(\log M_{n}\right)^{(3)}=M_{n}^{(3)}-M_{n}^{(2)} M_{n}^{(1)}+\frac{1}{3}\left(M_{n}^{(1)}\right)^{3}
$$

1-loop Integrands

\author{

1. Planarity
}
2. Dual Conformal Theory
3. IR property

$$
(\log M)^{(1)}=M^{(1)}=\int d^{4} x_{A} \frac{N}{x_{1 A}^{2} x_{2 A}^{2} x_{3 A}^{2} x_{4 A}^{2}} \sim \mathcal{O}\left(\epsilon^{-2}\right)
$$

1-loop Integrands

3. IR property

$$
M^{(1)}=\int d^{4} x_{A} \frac{N}{x_{1 A}^{2} x_{2 A}^{2} x_{3 A}^{2} x_{4 A}^{2}} \sim \mathcal{O}\left(\epsilon^{-2}\right)
$$

If we define the loop momentum $k^{\mu} \rightarrow 0+\delta q^{\mu}$ with arbitrary vector q^{μ}, In dual coordinate, $x_{1 A}^{2} \rightarrow \delta^{2}, x_{2 A}^{2} \rightarrow 2 x_{21} \delta, x_{4 A}^{2} \rightarrow 2 x_{41} \delta, x_{3 A}^{2} \rightarrow x_{31}^{2}$

Then the integrand $I^{(1)} \sim \mathcal{O}\left(\delta^{-4}\right)$
One can check that the leading divergence δ^{-4} term can be translated to ϵ^{-2} contribution in the integral This can be interpreted as there is no sub-divergence appearing in the integrand of the logarithm

2-loop Integrands

- Two loop momentum \rightarrow two loop dual momentum " x_{A}, x_{B} " and they are adjacent.
- Dual conformal invariance \rightarrow The denominator in the integrand should have 4 more loop momentums.

$$
\frac{x_{13}^{4} x_{24}^{2}}{x_{1 A}^{2} x_{1 B}^{2} x_{2 B}^{2} x_{3 A}^{2} x_{3 B}^{2} x_{4 A}^{2} x_{A B}^{2}}+\text { permutations }
$$

2-loop Integrands

- No sub-divergence check in soft-/collinear-limit
- In the single soft limit (only one loop momentum becomes soft), the divergences in the integrand of the logarithm should be canceled at the leading order

$$
\text { As } x_{1 A}^{2} \rightarrow \delta^{2}, x_{2 A}^{2} \rightarrow 2 x_{21} \delta, x_{4 A}^{2} \rightarrow 2 x_{41} \delta, x_{3 A}^{2} \rightarrow x_{31}^{2}, x_{A B}^{2} \rightarrow x_{1 B}^{2}
$$

$I_{4}^{(2)}=\frac{x_{13}^{4} x_{24}^{2}}{x_{1 A}^{2} x_{2 A}^{2} x_{2 B}^{2} x_{3 B}^{2} x_{4 A}^{2} x_{4 B}^{2} x_{A B}^{2}}+$ perm. $\rightarrow \frac{x_{13}^{4} x_{24}^{2}}{4 \delta^{4} x_{12} x_{14} x_{2 B}^{2} x_{3 B}^{2} x_{4 B}^{2} x_{1 B}^{2}}+\mathcal{O}\left(\delta^{-3}\right)$
$\left(I_{4}^{(1)}\right)^{2}=\frac{x_{13}^{2} x_{24}^{2}}{x_{1 A}^{2} x_{2 A}^{2} x_{3 A}^{2} x_{4 A}^{2}} \times \frac{x_{13}^{2} x_{24}^{2}}{x_{1 B}^{2}{ }_{1 B}^{2}{ }_{2 B} x_{3 B}^{2}{ }_{3 B}{ }_{4 B}^{2}}+$ perm. $\rightarrow \frac{x_{24}^{2}}{4 \delta^{4} x_{21} x_{41}} \frac{x_{13}^{2} x_{24}^{2}}{x_{1 B}^{2} x_{2 B}^{2}{ }_{2 B}{ }_{3 B}^{4} x_{4 B}^{2}}+\mathcal{O}\left(\delta^{-3}\right)$
$\left(\log I_{4}\right)^{(2)}=I_{4}^{(2)}-\frac{1}{2}\left(I_{4}^{(1)}\right)^{2} \sim \mathcal{O}\left(\delta^{-3}\right)$

2-loop Integrands

$$
I_{4}^{(2)}=\frac{x_{13}^{4} x_{24}^{2}}{x_{1 A}^{2} x_{2 A}^{2} x_{2 B}^{2} x_{3 B}^{2} x_{4 A}^{2} x_{4 B}^{2} x_{A B}^{2}}+\text { perm } .
$$

3-loop integrands

- Three loop momentum \rightarrow three loop dual momentum " x_{A}, x_{B}, x_{C} " and they are adjacent to at least one of them.
- Dual conformal invariance \rightarrow The denominator in the integrand should have 4 more loop momentums.
- Only two available dual conformal invariant integrands
- $I_{1}^{(3)}=\frac{x_{13}^{6} x_{24}^{2}}{x_{1 A}^{2} x_{1 B}^{2} x_{1 C}^{2} x_{2 C}^{2} x_{3 A}^{2} x_{3 B}^{2} x_{3 C}^{2} x_{4 B}^{2} x_{A B}^{2} x_{A C}^{2}}+$ sym.
- $I_{2}^{(3)}=\frac{x_{13}^{4} x_{24}^{2} x_{2 A}^{2}}{x_{1 A}^{2} x_{1 C}^{2} x_{2 B}^{2} x_{2 C}^{2} x_{3 A}^{2} x_{3 B}^{2} x_{4 A}^{2} x_{A B}^{2} x_{B C}^{2} x_{A C}^{2}}+$ sym.
- $I^{(3)}=a I_{1}^{(3)}+b I_{2}^{(3)}$

3-loop integrands

- $\left(\log I_{4}\right)^{(3)}=I_{4}^{(3)}-I_{4}^{(2)} I_{4}^{(1)}+\frac{1}{3}\left(I_{4}^{(1)}\right)^{3}$
. $I_{1}^{(3)}=\frac{x_{13}^{6} x_{24}^{2}}{x_{1 A}^{2} x_{1 B}^{2} x_{1 C}^{2} x_{2 C}^{2} x_{3 A}^{2} x_{3 B}^{2} x_{3 C}^{2} x_{4 B}^{2} x_{A B}^{2} x_{A C}^{2}}+$ sym.
- $I_{2}^{(3)}=\frac{x_{13}^{4} x_{24}^{2} x_{2 A}^{2}}{x_{1 A}^{2} x_{1 C}^{2} x_{2 B}^{2} x_{2 C}^{2} x_{3 A}^{2} x_{3 B}^{2} x_{4 A}^{2} x_{A B}^{2} x_{B C}^{2} x_{A C}^{2}}+$ sym.

(b)
- $I^{(3)}=a I_{1}^{(3)}+b I_{2}^{(3)}$
- In soft-/collinear-limit, the cancellation of the leading divergent term only happens at $a=1, b=1$

N-loop integrands?

Loop	\# of DCI candidates	\# of denominator topologies	\# of integrands with coefficient:			
			1	-1	2	0
1	1	1	1	0	0	0
2	1	1	1	0	0	0
3	2	2	2	0	0	0
4	8	6	6	2	0	0
5	34	30	23	11	0	0
6	256	197	129	99	1	27
7	2329	1489	962	904	7	456

Amplituhedron

- Grassmannian generalization of polygons and polytopes. Same way that convex plane polygons generalize triangles.
- Neither space-time nor Hilbert space make any appearance.
- Only the associated physics of locality and unitarity arise as consequence of the geometry (Positive Grassmannian)
- Meromorphic differential form is crucial to convert these geometries into physical scattering amplitudes.
- The calculation of scattering amplitudes is then reduced the mathematical question of determining this canonical form.

Momentum Twistor

- Twistor in the dual coordinate (Conformally compactified space)
- Twistor space W_{i}, with $i=1,2,3, \ldots, n$
- The dual space coordinate x_{1} and x_{2} are represented by the twistor lines [$W_{n} \wedge W_{1}$] and $\left[W_{1} \wedge W_{2}\right]$
- Their separation $\left(x_{1}-x_{2}\right)^{2}=\frac{\epsilon\left(W_{n}, W_{1}, W_{2}, W_{3}\right)}{\left\langle W_{n} W_{1}\right\rangle\left\langle W_{2} W_{3}\right\rangle} \quad \begin{aligned} & \text { where } \epsilon\left(W_{1}, W_{2}, W_{3}, W_{4}\right) \equiv \epsilon^{\alpha \beta \gamma \gamma \delta} W_{1, \alpha} W_{2, \beta} W_{3, \gamma} W_{4, \delta} \\ & \text { and }\left\langle W_{1} W_{2}\right\rangle \equiv I^{\alpha \beta} W_{1, \alpha} W_{2, \beta}\end{aligned}$

W^{n-1}

One-Loop Geometry

- At one loop we have a single line corresponding to the loop called "(AB)"
- The geometry is given by the positive Grassmannian $G_{+}(2,4)$
- The external data form a polygon in \mathbb{P}^{3} with the vertices $Z_{1}, Z_{2}, Z_{3}, Z_{4}$ and edges $Z_{1} Z_{2}$, $Z_{2} Z_{3}, Z_{3} Z_{4}, Z_{1} Z_{4}$.
- The line $A B=\mathscr{L}_{1} \mathscr{L}_{2}$ is parametrized as $\mathscr{L}_{\gamma}^{I}=D_{\gamma a} Z_{a}^{I}$
. $D=\left(\begin{array}{cccc}1 & x & 0 & -w \\ 0 & y & 1 & z\end{array}\right)$ where $x, y, z, w>0$
- $\langle A B 12\rangle=w,\langle A B 23\rangle=z,\langle A B 34\rangle=y,\langle A B 14\rangle=x$

Canonical form of positive geometry

- The form is fixed by the requirement of having simple poles on all the boundaries of the geometry.
- When we define the closed interval $[a, b] \subset \mathbb{P}^{1}(\mathbb{R})$ to be the set of points $\{(1, x) \mid x \in[a, b]\} \subset \mathbb{P}^{1}(\mathbb{R})$, where $a<b$.

$$
\Omega([a, b])=\frac{d x}{x-a}-\frac{d x}{x-b}=\frac{(b-a)}{(b-x)(x-a)} d x
$$

Example

Consider $0<x_{1}<x_{2}$, the form is $\Omega=\frac{d x_{1} d x_{2}}{x_{1}\left(x_{2}-x_{1}\right)}$
Consider $0<x_{1}<x_{2}<a$, the form is
$\Omega=\left(\frac{d x_{1}}{x_{1}}-\frac{d x_{1}}{x_{1}-a}\right)\left(\frac{d x_{2}}{x_{2}-x_{1}}-\frac{d x_{2}}{x_{2}-a}\right)=\frac{d x_{1} d x_{2}}{x_{1}\left(x_{2}-x_{1}\right)\left(a-x_{1}\right)}$

One-Loop Geometry

. $D=\left(\begin{array}{cccc}1 & x & 0 & -w \\ 0 & y & 1 & z\end{array}\right)$ where $x, y, z, w>0$

- The form is $\Omega=\frac{d x}{x} \frac{d y}{y} \frac{d w}{w} \frac{d z}{z}$
- In momentum twistors, $\Omega=\frac{\langle 1234\rangle^{2}}{\langle A B 12\rangle\langle A B 23\rangle\langle A B 34\rangle\langle A B 14\rangle}$

Two-Loop Geometry

- At two loop we have two lines corresponding to the loops called "(AB)", "(CD)"
- The lines $A B$ and $C D$ are parametrized as $\mathscr{L}_{\gamma}^{I}=D_{\gamma a}^{(i)} Z_{a}^{I}$
. $D^{(i)}=\left(\begin{array}{cccc}1 & x_{i} & 0 & -w_{i} \\ 0 & y_{i} & 1 & z_{i}\end{array}\right)$ where $x_{i}, y_{i}, z_{i}, w_{i}>0$ with $i=1,2$
- $\langle A B 12\rangle=w_{1},\langle A B 23\rangle=z_{1},\langle A B 34\rangle=y_{1},\langle A B 14\rangle=x_{1}$
- $\langle C D 12\rangle=w_{2},\langle C D 23\rangle=z_{2},\langle C D 34\rangle=y_{2},\langle C D 14\rangle=x_{2}$

Two-Loop Geometry

- A single mutual positivity condition $\left(x_{1}-x_{2}\right)\left(z_{1}-z_{2}\right)+\left(y_{1}-y_{2}\right)\left(w_{1}-w_{2}\right)<0$
- Without loss of generality, we can take $x_{1}<x_{2}$.
- Then we have $z_{1}-z_{2}>\frac{\left(y_{1}-y_{2}\right)\left(w_{1}-w_{2}\right)}{x_{2}-x_{1}}$

Two-Loop Geometry

- Case 1. $\left(y_{1}-y_{2}\right)\left(w_{1}-w_{2}\right)>0$,
- the form is

$$
\left[x_{1}, x_{2}\right] \frac{1}{z_{2}} \frac{1}{z_{1}-z_{2}-\frac{\left(y_{1}-y_{2}\right)\left(w_{1}-w_{2}\right)}{x_{2}-x_{1}}}\left(\left[y_{1}, y_{2}\right]\left[w_{1}, w_{2}\right]+\left[y_{2}, y_{1}\right]\left[w_{2}, w_{1}\right]\right)
$$

Two-Loop Geometry

- Case 2. $\left(y_{1}-y_{2}\right)\left(w_{1}-w_{2}\right)<0$,
- The form is

$$
\frac{1}{x_{1}} \frac{1}{x_{2}-x_{1}} \frac{1}{z_{1}}\left(\frac{1}{z_{2}}-\frac{1}{z_{2}-z_{1}+\frac{\left(y_{1}-y_{2}\right)\left(w_{1}-w_{2}\right)}{x_{2}-x_{1}}}\right)\left(\left[y_{1}, y_{2}\right]\left[w_{1}, w_{2}\right]+\left[y_{2}, y_{1}\right]\left[w_{2}, w_{1}\right]\right)
$$

Two-Loop Geometry

- With the term swapping $1 \leftrightarrow 2$, the sum of these terms is then
- $\binom{\frac{1}{x_{2} y_{1} y_{2} z_{1} w_{1} w_{2}\left[\left(x_{1}-x_{2}\right)\left(z_{1}-z_{2}\right)+\left(y_{1}-y_{2}\right)\left(w_{1}-w_{2}\right)\right]}+1 \leftrightarrow 2}{\frac{1}{x_{1} x_{2} y_{2} z_{1} z_{2} w_{1}\left[\left(x_{1}-x_{2}\right)\left(z_{1}-z_{2}\right)+\left(y_{1}-y_{2}\right)\left(w_{1}-w_{2}\right)\right]}+1 \leftrightarrow 2}+$

Two-Loop Geometry

- In terms of momentum twistors
$\cdot\left[\frac{\langle 1234\rangle^{3}}{\langle A B 12\rangle\langle A B 23\rangle\langle A B 34\rangle\langle A B C D\rangle\langle C D 34\rangle\langle C D 14\rangle\langle C D 12\rangle}+\frac{\langle 1234\rangle^{3}}{\langle A B 23\rangle\langle A B 34\rangle\langle A B 14\rangle\langle A B C D\rangle\langle C D 14\rangle\langle C D 12\rangle\langle C D 23\rangle}\right]+(A B) \leftrightarrow(C D)$

QCD = Peturbation from N=4 SYM?

- QCD can be viewed as containing a "conformal limit terms" and "conformalbreaking terms"
- Example) Loosening the symmetry : remove "Dual Conformal Theory"

Summary

- $\mathrm{N}=4 \mathrm{SYM}$ is a theory that can understand QCD.
- With the symmetry and the IR property, bootstrapping techniques can get up to 7-loop integrand.
- Amplituhedron is the geometrical approach with its underlying properties.
- By loosening the symmetry of the theory, one can get closer to QCD.

