Differential Equations for Feynman Integrals

Antonela Matijašić

IMPRS Young Scientist Workshop

Castle Ringberg, May 9th 2022

Why Feynman integrals?

$$
\mathcal{I}\left(a_{1}, \ldots a_{n}\right)=\left(\prod_{j=1}^{L} \int \frac{d^{D} l_{j}}{i \pi^{D / 2}}\right) \prod_{k=1}^{n} \mathcal{D}_{k}^{-a_{k}}
$$

- Connection to experiments
- Mathematical properties

Outline

1) Motivation
2) Integrating by differentiating
3) Simple example
4) Current project
5) Summary and outlook

Integrating by differentiating

Simple example

Three-mass triangle

- Integral family

$$
I_{a_{1}, a_{2}, a_{3}}=\int \frac{d^{D} k}{i \pi^{D / 2}} \frac{1}{\left(k^{2}\right)^{a_{1}}\left(\left(k+p_{1}\right)^{2}\right)^{a_{2}}\left(\left(k+p_{1}+p_{2}\right)^{2}\right)^{a_{3}}}
$$

- Kinematics

$$
\begin{gathered}
p_{i}^{2}=m_{i}^{2}, \quad i=1, \ldots, 3 \\
\sum_{i=1}^{3} p_{i}=0
\end{gathered}
$$

- Dimensional regularisation

$$
D=d_{0}-2 \epsilon
$$

Integration-by-parts (IBP) relations
 [Chetyrkin, Tkachov '81]

- Vanishing of total derivatives in dim-reg

$$
\int \frac{d^{D} k}{i \pi^{D / 2}} \frac{\partial}{\partial k^{\mu}} \frac{q^{\mu}}{\left(k^{2}\right)^{a_{1}}\left(\left(k+p_{1}\right)^{2}\right)^{a_{2}}\left(\left(k+p_{1}+p_{2}\right)^{2}\right)^{a_{3}}}=0
$$

- Relations between integrals with different power of propagators

$$
\begin{aligned}
& \quad\left(D-2 a_{1}-a_{2}-a_{3}\right) I_{a_{1}, a_{2}, a_{3}}-a_{3} I_{a_{1}-1, a_{2}, a_{3}+1}-a_{2} I_{a_{1}-1, a_{2}+1, a_{3}}+m_{3}^{2} a_{3} I_{a_{1}, a_{2}, a_{3}+1}+ \\
& m_{1}^{2} a_{2} I_{a_{1}, a_{2}+1, a_{3}}=0
\end{aligned}
$$

- Finite number of independent integrals \rightarrow basis of master integrals [Smirnov, Petukhov '11]

Canonical basis

$$
\begin{aligned}
& f_{1}=\epsilon m_{1}^{2} I_{2,1,0} \quad f_{2}=\epsilon m_{2}^{2} I_{0,2,1} \quad f_{3}=\epsilon m_{3}^{2} I_{1,0,2} \\
& \lambda\left(m_{1}^{2}, m_{2}^{2}, m_{3}^{2}\right)=m_{1}^{4}+m_{2}^{4}+m_{3}^{4}-2 m_{1}^{2} m_{2}^{2}-2 m_{1}^{2} m_{3}^{2}-2 m_{2}^{2} m_{3}^{2}
\end{aligned}
$$

- Uniform transcendentality

Differential equations

[Kotnikov '91, Remiddi ‘97, Gehrmann, Remiddi '00]

- System of first-order differential equations

$$
\frac{\partial}{\partial m_{i}^{2}} \vec{f}=\epsilon A_{i} \vec{f}, \quad i=1,2,3
$$

- Canonical DE: Henn'13〕 $\mathrm{d} \vec{f}=\epsilon \mathrm{d} A \cdot \vec{f} \quad \frac{\partial}{\partial m_{i}^{2}} A=A_{i}$

$$
\begin{aligned}
A= & \left(\begin{array}{cccc}
-\log \alpha_{1} & 0 & 0 & 0 \\
0 & -\log \alpha_{2} & 0 & 0 \\
0 & 0 & -\log \alpha_{3} & 0 \\
-\log \alpha_{4} & -\log \alpha_{5} & \log \alpha_{4}+\log \alpha_{5} & \log \alpha_{1}-\log \alpha_{2}-\log \alpha_{3}+2 \log \alpha_{6}
\end{array}\right) \\
& \vec{\alpha}=\left\{m_{1}^{2}, m_{2}^{2}, m_{3}^{2}, \frac{m_{1}^{2}-m_{2}^{2}-m_{3}^{2}+\sqrt{\lambda}}{m_{1}^{2}-m_{2}^{2}-m_{3}^{2}-\sqrt{\lambda}}, \frac{-m_{1}^{2}+m_{2}^{2}-m_{3}^{2}+\sqrt{\lambda}}{-m_{1}^{2}+m_{2}^{2}-m_{3}^{2}-\sqrt{\lambda}}, \sqrt{\lambda}\right\}
\end{aligned}
$$

Solving the DE's

$$
\vec{f}(m, \epsilon)=\mathbb{P} \exp \left(\epsilon \int_{\gamma} d A\right) \cdot \vec{b}(\epsilon)
$$

- Laurent series around $\epsilon=0$

$$
\vec{f}(m, \epsilon)=\sum_{k \geq 0} \epsilon^{k} \vec{f}^{k}(m)
$$

- k-fold iterated integral

$$
\vec{f}^{k}(m)=\sum_{j=0}^{k} \int_{\gamma} \underbrace{d A \cdot \ldots \cdot d A}_{j} \cdot \vec{b}^{(k-j)}
$$

Solving the DE's

- Solving in one region and relating to other regions by analytic continuation or solving in each kinematic region
- Choose a point and fix the boundary constants
- γ never leaves the region
- Solution in terms of:
- Chen iterated integrals
- Goncharov polylogarithms (GPLs)
- Basis of functions

Basis of functions

- Change of variables

$$
z=\frac{m_{1}^{2}+m_{2}^{2}-m_{3}^{2}+\sqrt{\lambda}}{2 m_{1}^{2}} \quad \bar{z}=\frac{m_{1}^{2}+m_{2}^{2}-m_{3}^{2}-\sqrt{\lambda}}{2 m_{1}^{2}}
$$

- Solution to $\mathrm{d} \vec{f}=\epsilon \mathrm{d} A \cdot \vec{f} \quad$ can be expressed as

$$
\vec{f}=\left(\epsilon^{2} w_{1}^{(2)}, \epsilon w_{2}^{(1)}, \epsilon w_{3}^{(1)}, 1\right)
$$

$w_{1}^{(2)}=\operatorname{Li}_{2}(z)-\operatorname{Li}_{2}(\bar{z})+\frac{1}{2} \log (z \bar{z}) \log \left(\frac{1-z}{1-\bar{z}}\right) \quad w_{2}^{(1)}=\log (z \bar{z}) \quad w_{3}^{(1)}=\log ((1-z)(1-\bar{z}))$

- Classical polylogarithms: $\operatorname{Li}_{n}(z)=\sum_{k=1}^{\infty} \frac{z^{k}}{k^{n}} \quad \forall n \in \mathbb{N} \quad \operatorname{Li}_{1}(z)=-\log (1-z)$

Integrating by differentiating

Current project

- With Johannes Henn and Julian Miczajka
- One-loop massless six-particle integral

$$
p_{i}^{2}=0 \quad \sum p_{i}=0, \quad i=1, \ldots, 6
$$

- 9 Lorentz invariants in $D_{\text {ext }}=d$

$$
\begin{aligned}
v_{i} & =\left(p_{i}+p_{i+1}\right)^{2}, \quad i=1, \ldots, 6 \\
v_{i+6} & =\left(p_{i}+p_{i+1}+p_{i+2}\right)^{2}, \quad i=1, \ldots, 3
\end{aligned}
$$

- Performed IBP reduction
- 33 master integrals in UT basis
$=9$ bubbles +2 three-mass triangles +6 one-mass boxes +3 two-masseasy boxes +6 two-mass-hard boxes +6 one-mass pentagons +1 hexagon

massless
massive
- 33×33 A-matrix in dlog form
- 103 letters (48 even letters, 43 odd letters, and 12 mixed)
- Boundary constants up to weight four
- Analytic solution in Euclidean region up to weight two

Goals

- $D_{\text {ext }} \rightarrow 4$ limit
- Physical $2 \rightarrow 4$ scattering region
- Analytic continuation
- Numerical checks
- Bonus questions

Summary

Outlook

- IBP relations
- Basis of master integrals
- Canonical differential equations
- Solution in terms of polylogarithms
- Finish our to-do list
- Two-loop six-particles
- Continue the analysis started in [Henn, Peraro, Xu, Zhang '21]
- Canonical basis

Thank you for the attention!

