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Recap: Entropy Bound
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Entropy Bound

Unitarity
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Entropy Bound Imposed by Unitarity

* Consider self-sustained object of ¢ Alternatively, the bound is
size R in d space-time

dimensions, ¢ 1
< —
A a
S < red * a is as an effective running
GGola coupling of the theory evaluated

at the scale 1/R.

e Areq ~ R22

* Ggoig 1S the Goldstone coupling



Entropy Bound Imposed by Unitarity

* The maximal entropy compatible with unitarity is

1 Area
SMax — E — f 2 )
where f = Gaold is the canonically normalized Goldstone decay

constant.



Saturons

* We refer to the objects saturating the entropy bounds as Saturons.

* Different saturons are discussed in [1-3]. These include:

e Certain solitons, instantons, baryons, oscillons,
* Black Holes,

* Lumps of classical fields,

* Vacuum Bubbles.

[1] G. Dvali, Entropy Bound and Unitarity of Scattering Amplitudes, JHEP03(2021) 126, arXiv:2003.05546.
[2] G. Dvali, Bounds on Quantum Information Storage and Retrieval, PTRS A, arXiv:2107.10616
[3] G. Dvali and O. Sakhelashvili, Black-Hole-Like Saturons in Gross-Neveu, arXiv:2111.03620.



Saturons

Saturons share the following universal properties [1-2]
* Their entropy satisfies the area law: 1
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 If unstable, they decay with a rate which gives the thermal rate of the temperature
1

TN_)
R

up to 1/S corrections.

* In semi-classical treatment, they exhibit an information horizon.

* The minimal time-scale required for the start of the information retrieval is
Volume R

Ggold a

tmin = SmaxR

where Volume ~ R<.
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Saturons as Black Holes



Black Holes properties

Their entropy satisfies the area law: [1]
Area Area

S ~ ~
MI;Z f—2

fNMp

Decay rate thermal rate of temperature

1
T ~ R’
up to 1/S corrections.

In semi-classical treatment, they exhibit an information horizon.

The minimal time-scale required for the start of the information retrieval is [2]

R3  Volume
—2 7 —2
My M,
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[1] S. W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43, 199 (1975).
[2] D. N. Page, Information in Black Hole Radiation, Phys. Rev. Lett. 71, 3743 (1993).



Saturons

e Saturons share the following universal properties [1-2]

* Their entropy satisfies the area law: 1  Area

S = — = TODAY
Max o f_z
* |f unstable, they decay with a rate which gives the thermal rate of the temperature
1
T ~ R’
up to 1/S corrections.
* In semi-classical treatment, they exhibit an information horizon. TODAY
* The minimal time-scale required for the start of the information retrieval is bounded from below
by, Volume R
tmin =~ = — = SmaxR

G a
where Volume ~ R€. Gold

[1] G. Dvali, Entropy Bound and Unitarity of Scattering Amplitudes, JHEP03(2021) 126, arXiv:2003.05546.
[2] G. Dvali, Bounds on Quantum Information Storage and Retrieval, PTRS A, arXiv:2107.10616 2



Saturon as a Vacuum Bubble



Vacuum Bubbles

Unbroken
Phase

SU(N) - SU(N — 1)xU(1)
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Model of a Saturon as a Vacuum Bubble
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Model of a Saturon as a Vacuum Bubble

V(p) =5 0*(F - )’

O , Unbroken Phase:
{ : SU(N)

is minimized by
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Vacuum Bubbles:
Thin Wall ApprOX|mat|on (R>» m™1)
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Vacuum Bubbles Stabilization

A Memory Burden Effect



Vacuum Bubbles Stabilization

e Consider the ansatz o

_ o)
JNN = 1)

U = exp|—if*T?].

where

Py diag (N — 1),-1,...,—1)

* Here T? corresponds to the respective broken generators of SU(N) [6].
0% = 6wt

[6] G. Dvali, O. Kaikov, and J. S. V. Bermudez, (2021), arXiv:2112.00551 [hep-th]



Vacuum Bubbles Stabilization:
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Vacuum Bubbles Stabilization:
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Vacuum Bubbles Stabilization:

p(tr)
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Vacuum Bubbles Stabilization

» A stationary bubble is obtained thanks to the excitations of the)
Goldstone mode(s).

* The bubble is stable because of two factors:

1) The Goldstone SU(N) charge is conserved

2) The same amount of charge in the exterior vacuum would cost much higher
energy.
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Vacuum Bubbles Stabilization

Large Bubbles Small Bubbles
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Vacuum Bubbles Micro-state Entropy

Large Bubbles Small Bubbles
w<<m w~m
m 1« R m1~R
1 1
* Ng > =~ N ~ Ngoia * Ng ~ =~ N~ Ngoia
1> A e 1~A
e 1 m10 sco 1
e S~ 2N |n (z) ~ Eln (m) S o EBubbleR
1 m® e S~S
* S5 K Siax s max

[8] J. D. Bekenstein,Universal Upper Bound on the Entropy-to-Energy
Ratio for BoundedSystems, Phys. Rev. D23no. 2 (1981), 287-298.47



Vacuum Bubbles Micro-state Entropy

Large Bubbles Small Bubbles -> Saturons
w<Km w~m
m~1 &R m~1 ~R
1 1
* Ng > =~ N ~ Ngoia * Ng ~ =~ N~ Ngoia
1> A e1~A1
e 1 m10 1
e S = —) ~=In|— *S~—-~FE R
S~ 2N In (A) —In (wlo) 7~ CBubble
1 m® e S~S
* S5 K Siax s max

[8] J. D. Bekenstein,Universal Upper Bound on the Entropy-to-Energy
Ratio for BoundedSystems, Phys. Rev. D23no. 2 (1981), 287-298.47



Information Horizon

Saturons in semiclassical limit



Information Horizon

* A universal property of the saturons is that in semi-classical limit, they
possess a strict information horizon.

* The information stored in the interior of the saturon can not be
extracted in any form.

* The general physical reason is that in this limit the memory modes,
that carry quantum information, decouple.



Semi-classical Limit

* The limit in which the classical bubble solution experiences no back
reaction from quantum fluctuations

a— 0, R = finite, o = finite, aN = finite.

e Simultaneously
[ — oo, m = finite.



Semi-classical Limit

* The limit in which the classical bubble solution experiences no back
reaction from quantum fluctuations

a — 0, R = finite, o = finite, aN = finite.

e Simultaneously
[ — oo, m = finite.

* Recall: For BH f ~ M,
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Semi-classical Limit

* The limit in which the classical bubble solution experiences no back
reaction from quantum fluctuations

a— 0, R = finite, o = finite, aN = finite.
f — oo, m = finite.
* In this limit, the effective coupling of a Goldstone mode of frequency
£
o2
aG — f,_z

goes to zero for any finite €.



Goldstone Horizon

* At finite f, a Goldstone mode of frequency € <K m cannot propagate
outside the bubble, even though the coupling a. is finite.

* TWO cases

* The energy of an internal perturbation € is such
e <m,

propagation is impossible due to the finite energy gap.

* £ K m,the perturbation energy can exceed the mass gap at the expense of a
large occupation number n; of Goldstone quanta.

ng — 1,
such a process is exponentially suppressed by afactor e e



Goldstone Horizon: An Example

* Lets consider a perturbation on a stable vacuum bubble, ¢y 5,

b5 | _ = p)dysgr)

lﬂf(r)
p(r) = eXp[Z F(0) ]

where
1”2

f) = =—e 727"
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Goldstone Horizon: An Example
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Goldstone Horizon: An Example
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Goldstone Horizon
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Correspondence to Black Holes



Correspondence to Black Holes

Saturons Black Holes

S =(fR)? =} ¢ S = (MpR)?
eT=R"1 eT=R"1

* tmin = R> f2 = SR * tmin = R3 M3 = SR

* Information/Goldstone Horizon * Information Horizon



Outlook

* Generalizations of our study are currently researched.

* Departures from semi-classical behavior can become observable for
the black holes that are relatively old and close to their half-decay

time.

* The light primordial black holes, provided they exist, can be within a
potentially interesting window.

* VVery recently some other possible observational consequences for
rotating black holes were discussed in [7]

[7] G. Dvali, F. Kilhnel and M. Zantedeschi, Vortexes in Black Holes, arXiv:hep-th/2112.08354.



Outlook
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Outlook
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Conclusions

* We have shown an explicit example of a Saturon as a Vacuum Bubble.
Small bubbles saturate the entropy bound and correspond to the
saturons of the theory.

* A large (macroscopic) occupation number of the Goldstone modes,
parametrized by w, stabilizes the Vacuum Bubbles. This phenomenon
is due to the memory burden effect and could be relevant for PBH

e Saturons (Vacuum Bubbles) exhibit a goldstone horizon, analog to the
information horizon of Black holes.
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Conclusions

Area law: 1 Areq
S j— j—
max a f_z
» JTemperature
T 1
R )

up to 1/S corrections.

* In semi-classical treatment, they exhibit an information horizon.

Information retrieval after

B Volume B R

tmin = = — = SR
min GGOld a max
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Vacuum Bubbles Stabilization:
Quantum picture of classical stability

* The energies in terms of the occupation numbers of the
corresponding quanta are

_1m> /l6m
Eini=wNg, where, N; = P ( 31 ),

1 m* /8m
Ewan=mN,, where, N, pl (27).

e Observe that Ng _z2m > 1 for the thin walls.
NCP 3w



Vacuum Bubbles Stabilization:
Quantum picture of classical stability

* Conclusion: A stationary bubble is obtained thanks to the excitations
of the) Goldstone mode(s).

* The bubble is stable because of two factors:

1) The fact that the Goldstone SU(N) charge is conserved; and

2) The fact that the same amount of charge in the exterior vacuum would cost
much higher energy.
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Spectrum
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Memory Burden Vaccum Bubbles
Effect Stabilization
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Vacuum Bubble
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Stabilization
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Vacuum Bubble Stabilization
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Vaccum Bubble
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Vaccum bubble Decay
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