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Recap: Entropy Bound
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Unitarity

Cross-section: 
!"→"

Cross−sec.on:
!"→$ $%&

[1] G. Dvali, Entropy Bound and Unitarity of Scattering Amplitudes, JHEP03(2021) 126, arXiv:2003.05546.
[2] G. Dvali, Bounds on Quantum Information Storage and Retrieval, Philosophical Transactions of Royal Society 
A, arXiv:2107.10616
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Entropy Bound

Unitarity 

!"→$ %&' ∼ )*+/-).

imposes the following bound on 
the entropy
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Entropy Bound Imposed by Unitarity

• Consider self-sustained object of 
size ! in " space-time 
dimensions,

# ⩽ %&'(
)*+,-

• %&'( ∼ !-/0
• )*+,- is the Goldstone  coupling

• Alternatively, the bound is

# ⩽ 1
2

• 2 is as an effective running 
coupling of the theory evaluated 
at the scale 1/!.
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Entropy Bound Imposed by Unitarity

• The maximal entropy compatible with unitarity is

!"#$ = 1
' =

()*+
,-. ,

where , ≡ 12345-6/. is the canonically normalized Goldstone decay 
constant.

6



Saturons

• We refer to the objects saturating the entropy bounds as Saturons. 
• Different saturons are discussed in [1-3]. These include:
• Certain solitons, instantons, baryons, oscillons, 
• Black Holes,
• Lumps of classical fields, 
• Vacuum Bubbles.

[1] G. Dvali, Entropy Bound and Unitarity of Scattering Amplitudes, JHEP03(2021) 126, arXiv:2003.05546.
[2] G. Dvali, Bounds on Quantum Information Storage and Retrieval, PTRS A, arXiv:2107.10616
[3] G. Dvali and O. Sakhelashvili, Black-Hole-Like Saturons in Gross-Neveu, arXiv:2111.03620.
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Saturons

Saturons share the following universal properties [1-2] 
• Their entropy satisfies the area law:

!"#$ = 1
' =

()*+
,-.

• If unstable, they decay with a rate which gives the thermal rate of the temperature

/ ∼ 1
1 ,up to 1/! corrections.

• In semi-classical treatment, they exhibit an information horizon.

• The minimal time-scale required for the start of the information retrieval is
5678 =

9:;<=*
>?@AB

= 1
' = !C#$1

where 9:;<=* ∼ 1B.
[1] G. Dvali, Entropy Bound and Unitarity of Scattering Amplitudes, JHEP03(2021) 126, arXiv:2003.05546.
[2] G. Dvali, Bounds on Quantum Information Storage and Retrieval, PTRS A, arXiv:2107.10616



Saturons as Black Holes
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Black Holes properties
• Their entropy satisfies the area law: [1]

S ∼ #$%&
'()*

∼ #$%&
+)*

• + ∼ '(

• Decay rate thermal rate of temperature

, ∼ 1
. ,up to 1/1 corrections.

• In semi-classical treatment, they exhibit an information horizon.

• The minimal time-scale required for the start of the information retrieval is [2] 

3456 = 1. ∼ .8
'()*

∼ 9:;<=%
'()*

[1] S. W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43, 199 (1975).
[2] D. N. Page, Information in Black Hole Radiation, Phys. Rev. Lett. 71, 3743 (1993).



Saturons

• Saturons share the following universal properties [1-2] 
• Their entropy satisfies the area law: 

!"#$ =
&
'
=
()*+
,-.

• If unstable, they decay with a rate which gives the thermal rate of the temperature

/ ∼
1
2
,

up to 1/5 corrections.

• In semi-classical treatment, they exhibit an information horizon.

• The minimal time-scale required for the start of the information retrieval is bounded from below 
by,

6789 =
:;<=>?
@ABCD

=
2
E
= 5FGH2

where :;<=>? ∼ 2D.

[1] G. Dvali, Entropy Bound and Unitarity of Scattering Amplitudes, JHEP03(2021) 126, arXiv:2003.05546.
[2] G. Dvali, Bounds on Quantum Information Storage and Retrieval, PTRS A, arXiv:2107.10616
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Saturon as a Vacuum Bubble
A Model

12



Vacuum Bubbles

13

Unbroken 
Phase

Broken
Phase

!" # → !" # − 1 ×" 1



Model of a Saturon as a Vacuum Bubble

!(#) = &'
2 #

) *+ − # )
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Model of a Saturon as a Vacuum Bubble

!(#) = &'
2 #

) *+ − # )

is	minimized	by

# = 7
0.

*+

Unbroken Phase: 
:; <

Broken Phase:
:; < − 1 ×; 1
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Vacuum Bubbles: 
Thin Wall Approximation (" ≫ $%&)

( ) = +,
- 1 + tanh 4 5%6

-
$ = 1
" = 1216



Vacuum Bubbles Stabilization
A Memory Burden Effect
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Vacuum Bubbles Stabilization

• Consider the ansatz
!"# = %&Φ(% "

#,
where

Φ( =
* +
, , − 1

diag , − 1 ,−1,… ,−1

% = exp −789:9 .

• Here :9 corresponds to the respective broken generators of <% , [6].

89 = =9>?@

[6] G. Dvali, O. Kaikov, and J. S. V. Bermudez, (2021), arXiv:2112.00551 [hep-th]
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Vacuum Bubbles Stabilization:

"̇ = $ "̇ = %

Thin wall approximation for:
& ≈ 0.24 ,,
./ =

12
,
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Vacuum Bubbles Stabilization:

"̇ = $ "̇ = %

Thin wall approximation for:
& ≈ 0.24 ,,
./ =

12
,
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Vacuum Bubbles Stabilization:

"̇ = $ "̇ = %
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Thin wall approximation for:
& ≈ 0.24 ,,
./ =

12
,
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Vacuum Bubbles Stabilization

• A stationary bubble is obtained thanks to the excitations of the) 
Goldstone mode(s).

• The bubble is stable because of two factors: 
1) The Goldstone !"($) charge is conserved
2) The same amount of charge in the exterior vacuum would cost much higher 

energy.
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Vacuum Bubbles Stabilization

Large Bubbles 
! ∼ 12%&'

Small Bubbles
! ∼ 1.02%&'
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Vacuum Bubbles Micro-state Entropy

Large Bubbles 
! ≪ #
#$% ≪ &

• '( ≫ %
* ∼ ' ∼ '(,-.

• 1 ≫ 0
• S ≈ 2' ln 6

7 ∼ %
* ln

89:

;9:

• < ≪ <=>? ∼ %
*
8@

;@

Small Bubbles
! ∼ #
#$% ∼ &

• '( ∼ %
* ∼ ' ∼ '(,-.

• 1 ∼ 0
• S ∼ %

* ∼ ABCDDE6&
• S ∼ <8FG

[8] J. D. Bekenstein,Universal Upper Bound on the Entropy-to-Energy 
Ratio for BoundedSystems, Phys. Rev. D23no. 2 (1981), 287-298.47
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Vacuum Bubbles Micro-state Entropy

Large Bubbles 
! ≪ #
#$% ≪ &

• '( ≫ %
* ∼ ' ∼ '(,-.

• 1 ≫ 0
• S ≈ 2' ln 6

7 ∼ %
* ln

89:

;9:

• < ≪ <=>? ∼ %
*
8@

;@

Small Bubbles -> Saturons
! ∼ #
#$% ∼ &

• '( ∼ %
* ∼ ' ∼ '(,-.

• 1 ∼ 0
• S ∼ %

* ∼ ABCDDE6&
• S ∼ <8FG

[8] J. D. Bekenstein,Universal Upper Bound on the Entropy-to-Energy 
Ratio for BoundedSystems, Phys. Rev. D23no. 2 (1981), 287-298.47
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Information Horizon
Saturons in semiclassical limit
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Information Horizon

• A universal property of the saturons is that in semi-classical limit, they 
possess a strict information horizon. 
• The information stored in the interior of the saturon can not be 

extracted in any form. 
• The general physical reason is that in this limit the memory modes, 

that carry quantum information, decouple.
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Semi-classical Limit

• The limit in which the classical bubble solution experiences no back 
reaction from quantum fluctuations 

! → 0, % = 'inite, , = 'inite, !- = 'inite.

• Simultaneously 
/ → ∞, 1 = 'inite.
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Semi-classical Limit

• The limit in which the classical bubble solution experiences no back 
reaction from quantum fluctuations 

! → 0, % = 'inite, , = 'inite, !- = 'inite.

• Simultaneously 
/ → ∞, 1 = 'inite.

• Recall: For BH / ∼ 34
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Semi-classical Limit

• The limit in which the classical bubble solution experiences no back 
reaction from quantum fluctuations 

! → 0, % = 'inite, , = 'inite, !- = 'inite.
/ → ∞, 1 = 'inite.

• In this limit, the effective coupling of a Goldstone mode of frequency 
2

!3 =
24
/4

goes to zero for any finite 2.
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Goldstone Horizon

• At finite !, a Goldstone mode of frequency # ≪ % cannot propagate
outside the bubble, even though the coupling &' is finite. 
• Two cases
• The energy of an internal perturbation # is such

# < %,
propagation is impossible due to the finite energy gap.
• # ≪ %, the perturbation energy can exceed the mass gap at the expense of a 

large  occupation number )* of Goldstone quanta.

)* → 1,
such a process is exponentially suppressed by afactor e./0
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Goldstone Horizon: An Example

• Lets consider a perturbation on a stable vacuum bubble, !"#, 

!$% &'() = +(-)!"#$% -

+ - = exp 23
2
5 -
5 0 78

where 

5 - = 1
23: e

; <=
>?=
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Goldstone Horizon: An Example
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Goldstone Horizon: An Example
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Goldstone Horizon

! ≡ 5/% 35



Correspondence to Black Holes
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Correspondence to Black Holes

Saturons
• ! = #$ % = &'(
• ) = $'(
• *+,- = $. #% = !$
• Information/Goldstone Horizon

Black Holes
• ! = /0$ %

• ) = $'(
• *+,- = $. /0

% = !$
• Information Horizon 
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Outlook

• Generalizations of our study are currently researched.
• Departures from semi-classical behavior can become observable for 

the black holes that are relatively old and close to their half-decay 
time. 
• The light primordial black holes, provided they exist, can be within a 

potentially interesting window.
• Very recently some other possible observational consequences for 

rotating black holes were discussed in [7]

[7] G. Dvali, F. Kühnel and M. Zantedeschi, Vortexes in Black Holes, arXiv:hep-th/2112.08354.
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Outlook
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Outlook
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Conclusions

• We have shown an explicit example of a Saturon as a Vacuum Bubble. 
Small bubbles saturate the entropy bound and correspond to the 
saturons of the theory.
• A large (macroscopic) occupation number of the Goldstone modes, 

parametrized by !, stabilizes the Vacuum Bubbles. This phenomenon 
is due to the memory burden effect and could be relevant for PBH
• Saturons (Vacuum Bubbles) exhibit a goldstone horizon, analog to the 

information horizon of Black holes.
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Conclusions

• Area law: 
!"#$ = 1

' =
()*+
,-.

• Temperature

/ ∼ 1
1 ,up to 1/! corrections.

• In semi-classical treatment, they exhibit an information horizon.

• Information retrieval after

4567 =
89:;<*
=>?@A

= 1
' = !"#$1

42



Thank you
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Appendix
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Vacuum Bubbles Stabilization:
Quantum picture of classical stability
• The energies in terms of the occupation numbers of the 

corresponding quanta are

!"#$=&'(, where, '( ≡ 1
,
-.

&.
160
81 ,

!2344=-'5, where, '5 ≡
1
,
-6

&6
80
27 .

• Observe that  :;:< =
=
>
?
@ ≫ 1 for the thin walls.
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Vacuum Bubbles Stabilization:
Quantum picture of classical stability
• Conclusion: A stationary bubble is obtained thanks to the excitations 

of the) Goldstone mode(s).

• The bubble is stable because of two factors: 
1) The fact that the Goldstone !"($) charge is conserved; and 
2) The fact that the same amount of charge in the exterior vacuum would cost 

much higher energy.
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Spectrum
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Memory Burden
Effect

Large amount of
Memory patterns

Stored quantum
information. 

Slowdown of the
system’s evolution

Vaccum Bubbles
Stabilization

Large amount of
Bubble micro-states

Excitations of the
Goldstone modes

Slowdown of
bubble's decay
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Vacuum Bubble 
Decay
"̇ = $
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Stabilization
"̇ ≠ $
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Stabilization
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Vacuum Bubble Stabilization
Decay
"̇ = $

�

�

�

�

Stabilization
"̇ ≠ $
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Vaccum Bubble Stabilization in d=3
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Vaccum bubble Decay
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