Constraints on the scalar potential

from the SDC

Julian Freigang

YSW 2022

Constraints on the scalar potential from the SDC

Some general quantum gravity argument with possible experimental implications

Julian Freigang

YSW 2022

Constraints on the scalar potential from the SDC

Some general quantum gravity argument with possible experimental implications

Julian Freigang

YSW 2022

Experimental evidence: none.... (e.g. no hints of SUSY or higher dimensions)

- Experimental evidence: none.... (e.g. no hints of SUSY or higher dimensions)
 - > Not a problem, string theory not ruled out

- Experimental evidence: none.... (e.g. no hints of SUSY or higher dimensions)
 - > Not a problem, string theory not ruled out
- My personal opinion: an incredible hypetrain which came to an abrupt end

- Experimental evidence: none.... (e.g. no hints of SUSY or higher dimensions)
 - > Not a problem, string theory not ruled out
- My personal opinion: an incredible hypetrain which came to an abrupt end

 New point of view: try to take away general lessons from ST as it is a consistent theory of quantum gravity

Swampland program

 Seperate effective theories which are compatible with quantum gravity in the UV from the ones which aren't

- Seperate effective theories which are compatible with quantum gravity in the UV from the ones which aren't
- Distinction between the two via conjectures, e.g. no global symmetries, weak gravity conjecture, SDC ...

- Seperate effective theories which are compatible with quantum gravity in the UV from the ones which aren't
- Distinction between the two via conjectures, e.g. no global symmetries, weak gravity conjecture, SDC ...
- Usually we have:

String theory = quantum gravity

Some general quantum gravity argument: Scalar Distance Conjecture

- Consider a theory, coupled to gravity, with a moduli space M parametrized by some scalar fields without potential. Starting from any point P in M there exists another point Q in M such that the geodesic distance between P and Q is infinite.
- Then, there exists an infinite tower of states scaling as

 $M(Q) \sim M(P) e^{-\alpha d(P,Q)}$

α>0

Some general quantum gravity argument:

Scalar Distance Conjecture

- Consider a theory, coupled to gravity, with a moduli space M parametrized by some scalar fields without potential. Starting from any point P in M there exists another point Q in M such that the geodesic distance between P and Q is infinite.
- Then, there exists an infinite tower of states scaling as

 $M(Q) \sim M(P) e^{-\alpha d(P,Q)}$

α>0

 Shortest distance between two points on a curved space, i.e. the geodesic equation lets you find the shortest path on a curved space

- Shortest distance between two points on a curved space, i.e. the geodesic equation lets you find the shortest path on a curved space
- Physical interpretation: a geodesic is how a particle moves, of no force is acting on it

- Shortest distance between two points on a curved space, i.e. the geodesic equation lets you find the shortest path on a curved space
- Physical interpretation: a geodesic is how a particle moves, of no force is acting on it

= ()

Geodesic equation:
X + Y X

An example: 2-sphere

An example: 2-sphere

An example: 2-sphere

٨X $\rightarrow \chi^{\circ}\chi^{\prime}, \ldots \chi^{\bullet-\Lambda}$

 $S \sim \left((d+1 \text{ gravity}) \sim \int (d \text{ gravity}) + \frac{1}{R^2} (\partial R)^2 \right)$

 $S \sim \int (d+1 \text{ gravity}) \sim \int (d \text{ gravity}) + \frac{1}{R^2} (\partial R)^2$ $\int -\int \left(\frac{d+1}{R^2} \operatorname{growny}_{r} \right)^2 = \int \left(\ln R \right)^2 = \left(\partial \phi \right)^2$ $\sum_{R^2} \left(\partial R \right)^2 = \int \left(\ln R \right)^2 = \left(\partial \phi \right)^2$ Scalar Field

 $S \sim \int (d+1 \text{ gravity}) \sim \int (d \text{ gravity}) + \frac{1}{R^2} (\partial R)^2$ $L \Rightarrow \frac{1}{R^2} (\partial R)^2 = \partial (\ln R)^2 = (\partial \phi)^2$ Scalar Field $L R \in [0,\infty] \rightarrow \phi \in [-\infty,\infty]$ moduli

 $S \sim \int (d+A \text{ gravity}) \sim \int (d \text{ gravity}) + \frac{A}{R^2} (\partial R)^2$ $L \Rightarrow \frac{A}{R^2} (\partial R)^2 = \partial (\ln R)^2 = (\partial \phi)^2$ Scalar Field Fiel $L \in [0,\infty] \longrightarrow \phi \in [-\infty,\infty]$ $L = geodesic distance : d(P,Q) = \phi_Q - \phi_P$ Space

• Add a massless scalar to the theory:

$$S_{grow} + \int (\partial \Psi)^2 \sim S_{grow} + \int \Psi \square_{d+A} \Psi$$

• Add a massless scalar to the theory:

$$S_{grow} + \int (\partial \Psi)^2 \sim S_{grav} + \int \Psi \Box_{d+A} \Psi$$

$$L = \Psi(X^M) - \sum_{N=-\infty}^{\infty} \Psi_n(X^M) e^{2\pi i n X^M}$$

• Add a massless scalar to the theory:

But where is the massless tower?• And what about $R \rightarrow 0$ or $\phi \rightarrow -\infty$ \mathcal{L}

But where is the massless tower?• And what about $R \rightarrow 0$ or• And what about $R \rightarrow 0$ or

• There are also winding states:

But where is the massless tower?• And what about $R \rightarrow 0$ or• And what about $R \rightarrow 0$ or

• There are also winding states:

• This is inherently stringy (or inherent to QG)

 Add a potential for the moduli, i.e. the scalar fields parametrizing the compact geometry

 $\ddot{\mathbf{x}} + \nabla \dot{\mathbf{x}}^2 = 0$

 Add a potential for the moduli, i.e. the scalar fields parametrizing the compact geometry

<u>x</u>² =)

X +

 Add a potential for the moduli, i.e. the scalar fields parametrizing the compact geometry

 $\Gamma \dot{x}^2 = \partial V$

X +

• There is an effective scalar theory with a potential:

 $\ddot{\mathbf{x}} + \nabla \dot{\mathbf{x}}^2 = 0$

