

Combined analysis pipeline for joint observations with MAGIC and CTA LST-1

IMPRS Young Scientist Workshop, Ringberg 2022

GIORGIO PIROLA*,

FOR THE CTA LST PROJECT AND MAGIC COLLABORATION

*Ph.D candidate at Max Planck Institut für Physik, Munich

10/05/20222

High-Energy gamma-ray astronomy

Multi-wavelength approach: cover the whole electromagnetic spectrum, from radio waves to gamma rays, to study sources at different wavelengths.

- Why gammas?
 - Gammas are neutral ightarrow we can study their production sites through the spectra we measure.

1/18

- Can give information on cosmic rays origins and mechanism of acceleration.
- Probes for fundamental physics problems: Dark Matter, LIV

Energy Classification

- High Energy (HE): 0.5 MeV 100 GeV
- Very High Energy (VHE): 100 GeV 100 TeV
- Ultra High Energy (UHE): 100 TeV 100 PeV
- Extreme High Energy (EHE): > 100 PeV
- Sources
 - Galactic sources: Pulsars, Supernova Remnants, Binary Systems.
 - Extragalactic sources: Starburst, AGN, GRB.

The VHE γ-ray Physics Program

Detection Techniques

Detection of VHE (and more energetic) gammas is not possible with satellites \rightarrow limited effective areas $\sim m^2$

Ground detection

- Relies on Extensive Air Shower (EAS)
 development
- Effective areas $ightarrow \sim 10^5 m^2$
- 2 complementary techniques
- IACT (Imaging Air Cherenkov Technique):
 - sensitive to point-like sources
 - collection area $\sim 10^4 m^2$ (light-pool)
 - energy range \rightarrow VHE
- EAS arrays:
 - nearly 100% duty cycle;
 - higher energy threshold;
 - energy range \rightarrow UHE

- Extensive Air Showers are the result of the interaction of cosmic primary particle with the atmosphere.
- There are two kinds of EAS:
- (a) Electromagnetic showers $\rightarrow \,$ signal for IACTs
- (b) Hadronic showers: $\rightarrow \,$ background ($\sim 10^3$ greater than gamma signal)
 - Many of these secondaries travel faster than light in the atmospheric medium \rightarrow **flashes of Cherenkov light** detected by IACTs:
 - Large mirrors collect Cherenkov light and focused it on a camera of PMTs.
 - PMTs:
 - Sensitive in the wavelength range of Cherenkov light.
 - Very fast response \rightarrow duration of Cherenkov pulses \sim few ns

Physical properties of the primary particle: Energy Direction "Gammaness"

ML → Random Forests (trained with MC data)

Physical properties of the primary particle: Energy Direction "Gammaness"

ML → Random Forests (trained with MC data)

• The camera is located in the focal plane of the mirrors: the image has a comet-like shape with the head pointing towards source position.

Energy:

• The higher the energy, the brighter the image.

Different shape of Cherenkov

Classification:

- Image produced gamma-initiated EAS \rightarrow compact elliptic shape
- Image produced hadron-initiated EAS \rightarrow more complex structure due to E.M. sub-showers

The whole parametrization of the images produced MC simulated events, is used to train a ML technique known as **Random Forest** method

Reconstruction performances are remarkably improved with the stereoscopic view

Cherenkov Telescope Array (CTA)

CTA will cover a wide energy range between 20 GeV and 300 TeV

- Sensitivity and performance far superior to current experiments
- More than 100 telescopes in two array sites:
 - Northern hemisphere array (La Palma, Canary Islands)
 - **Southern hemisphere array** (Chile, near Paranal)

MAGIC and LST-1

O.R.M. (2200 m a.s.l.), La Palma, Canary Islands (Spain)

CTA North:

4 Large Sized Telescopes (LSTs)

9 Medium Sized Telescopes (MSTs) in Alpha Configuration (aiming at 15 MSTs at a later stage of CTA construction)

LST-1 → 2018 (in commissioning phase)

LST 1

~85 m

MAGIC 1

Joint Observations

Being at \sim 100m from each others, means that can be triggered by the same event: Cherenkov light-pool \rightarrow \sim 100m radium

- We already have several hours of simultaneous observations:
- first goal → cross-calibration of the 2 systems.
- final aim → perform the event-reconstruction with a 3-telescope stereoscopic view.

How?

• By comparing MAGIC and LST-1 event timestamps and performing an offline search of the coincident events

MAGIC 1 Log10(Intensity/phe)

1.5

1.0 1.5 2.0 2.5 3.0

4.5 5.0

4.0

Joint Observations

The coincidence search is performed comparing timestamps:

- a given offset is applied to LST-1 event timestamp
- the algorithm searches for an event in MAGIC included within a certain coincidence window

- the process is iterated over different offset values
- the final coincident events are taken with the average offset

Hardware trigger under development ightarrow should be ready by this year

Data analysis chain

11/18

Data analysis chain

ightarrow Stereo parameters added to the Random Forests training features

11/18

Combined analysis pipeline

Performance for different telescope combinations

- MC data:
 - point-like gamma with 0.4° wobble
 - 5 GeV < E < 50 TeV
 - Zd=40° Az=90°

- Crab data:
 - 4 runs of joint observations (2021/12/15)
 - 35°<Zd<50°

Performance for different telescope combinations

- MC data:
 - point-like gamma with 0.4° wobble
 - 5 GeV < E < 50 TeV
 - Zd=40° Az=90°

- Crab data:
 - 4 runs of joint observations (2021/12/15)
 - 35°<Zd<50°

Instrument Response Functions (IRFs)

- M1+M2
 - Only by this combo: 0.2%
 - Total: 56.1%
- <u>M1+M2+LST1</u>
 - Total : 55 .9%
- M1+LST1
 - Only by this combo: 16.0%
 - Total: 71.8%
- M2+LST1
 - Only by this combo: 27.9%
 - Total: 83.8%

14/18

Instrument Response Functions (IRFs)

- M1+M2
 - Only by this combo: 0.2%
 - Total: 56.1%
- <u>M1+M2+LST1</u>
 - Total : 55 .9%
- M1+LST1
 - Only by this combo: 16.0%
 - Total: 71.8%
- M2+LST1
 - Only by this combo: 27.9%
 - Total: 83.8%

Instrument Response Functions (IRFs)

- M1+M2
 - Only by this combo: 0.2%
 - Total: 56.1%
- <u>M1+M2+LST1</u>
 - Total : 55 .9%
- M1+LST1
 - Only by this combo: 16.0%
 - Total: 71.8%
- M2+LST1
 - Only by this combo: 27.9%
 - Total: 83.8%

better background rejection

Crab Detection

- intensity> 50 phe
- gammaness>0.8
- θ²<0.035^{o2}
- 1 OFF region
- Effective time: 55.1 min

Dec [°]

600

MAX-P

 θ^2_{cut}

Crab joint observation

Crab Detection

Outlook

The pipeline for the combined analysis is still under development, but it has already demonstrated its potential, showing improvements in the performance reconstruction.

Next steps:

- Optimization of the reconstruction process:
 - Random Forests optimization (now 3 RFs for combination)
- Check of the reliability of the simtel array MC production:
 - New MC production covering a wider range of zenith angles
 - Detailed study and comparison of the MC data with Crab Observations
- Development of the last part of the pipeline:
 - More automatic tools for the IRFs production
 - gammapy tools for the high level analysis

Observing new sources and do physics!

Backup slides

Backup: Angular resolution

- M1+M2+LST1
- Total: 55.9%
- M1+M2

•

- Only by this combo: 0.2%
- Total: 56.1%
- M1+LST1
 - -Only by this combo: 16.0%
 - Total: 71.8%
- M2+I ST1
 - Only by this combo: 27.9%
 - Total: 83.8%

Backup: Energy resolution

- Total : 55 .9%

- M1+M2
 - Only by this combo: 0.2%
 - Total: 56.1%
- M1+LST1
 - Only by this combo: 16.0%
 - Total: 71.8%
- M2+LST1
 - Only by this combo: 27.9%
 - Total: 83.8%

Backup: Effective Area

• <u>M1+M2+LST1</u>

- Total : 55 .9%
- M1+M2
 - Only by this combo: 0.2%
 - Total: 56.1%
- M1+LST1
 - Only by this combo: 16.0%
 - Total: 71.8%
- M2+LST1
 - Only by this combo: 27.9%
 - Total: 83.8%

Backup: Random Forest

Random Forest Training

- Each events is a point in a multidimensional space constituted by its Hillas Parameters;
- · 2 MC samples (gammas/hadrons) are created in the space;
- One dimension is chosen at random and the optimal cut (x_{cut}) that better separates the 2 distribution is found (using the so called *Gini* index);
- The sample is divided: x<x_{cut} and x>x_{cut};
- The process is iterated over all the dimensions until the final sub-sample contains only same type elements (g/h);
- Once trained the single decision tree the operation is then repeated (~100 trees);

Every real event goes through the forest and it is associated to a value ('gammaness'), depending on how many times ended to a "h" or "g" leaf.

