Measurement of non–prompt $\Lambda_{\rm c}^+$ production in pp collisions at $\sqrt{s}=13$ TeV with ALICE

Accessing the hadronisation of the beauty quark

Daniel Battistini Young Scientist Workshop 2022 – Schloss Ringberg 09-13 May 2022

The factorisation approach

Hadrons that contain charm or beauty quarks are referred as heavy–flavour (HF); The *factorisation approach* describes their production as a convolution of three terms:

Production of HF-hadrons \rightarrow ideal probe to test pQCD and the factorisation approach.

Charmed-hadron production

Charmed hadrons are classified according to their origin:

- **Prompt** \rightarrow coming from:
 - hadronisation c quark
 - decay of excited charmed-hadron states.
- **Non–prompt** \rightarrow coming from:
 - beauty hadron decay

Prompt and non-prompt cross sections D mesons:

- Experimentally measured,
- consistent with pQCD calculations (FONLL).

The production of charmed–hadrons allows us to investigate the fragmentation process, e.g. via baryon/meson ratios.

Hadronisation of the charm and beauty quarks

Hadronisation of charm $\rightarrow \text{prompt } \Lambda^+_{c}/D^0$

Recent measurements:

Enhanced baryon production in pp collisions w.r.t. e^+e^- . The hadronisation of charm depends on the collision system!^[1,2]

Hadronisation of beauty \rightarrow ?

Exclusive b-hadron measurements Challenging because of:

- Small beauty cross section;
- Small branching ratios.

Non–prompt charmed hadrons in Nature: $5 \div 10$ %, depending on the p_{T} .

<u>Goal of this work</u>: measure the non–prompt Λ_c^+ production in the $\Lambda_c^+ \to pK_S^0 \to p\pi^+\pi^-$ decay channel.

Access to the hadronisation mechanism in the beauty sector, via non-prompt Λ_c^+/D^0 .

[1] Phys. Rev. Lett. 128, 012001[2] Phys. Rev. D 100, 031102(R)

Daniel Battistini

The ALICE detector

Decay topologies: prompt, non-prompt and background

Displacement from the interaction point

To separate the three contributions \rightarrow Machine Learning (ML) method:

- Multi-class classification algorithm;
- Training variables: topology + PID.

Machine Learning & Boosted Decision Trees

Machine Learning allows for more advanced selections.

- Exploit high order correlation between the features;
- Easily handle multi-dimensional studies.

The use of ML is typically characterised by:

- Learning phase;
- hyperparameter optimisation;
- test of the model performance;
- application to unseen data.

In this work \rightarrow Boosted Decision Trees (XGBoost):

- Simple;
- Performant.

In this case: 3 classes (prompt, non-prompt and background) Binary classificators are combined

The model is provided with example candidates for each class:

- Background: data (sidebands)
- Signal (prompt and non–prompt): Monte Carlo (MC)

Output of the ML model: three scores

 \rightarrow probability of belonging to each class.

Good separation between the three classes;

- Large non-prompt score;
- Small background score.

In this case: 3 classes (prompt, non-prompt and background) Binary classificators are combined

The model is provided with example candidates for each class:

- Background: data (sidebands)
- Signal (prompt and non–prompt): Monte Carlo (MC)

Output of the ML model: three scores

 \rightarrow probability of belonging to each class.

Good separation between the three classes;

- Large non-prompt score;
- Small background score.

In this case: 3 classes (prompt, non-prompt and background) Binary classificators are combined

The model is provided with example candidates for each class:

- Background: data (sidebands)
- Signal (prompt and non–prompt): Monte Carlo (MC)

Output of the ML model: three scores

 \rightarrow probability of belonging to each class.

Good separation between the three classes;

- Large non-prompt score;
- Small background score.

In this case: 3 classes (prompt, non-prompt and background) Binary classificators are combined

The model is provided with example candidates for each class:

- Background: data (sidebands)
- Signal (prompt and non–prompt): Monte Carlo (MC)

Output of the ML model: three scores

 \rightarrow probability of belonging to each class.

Good separation between the three classes;

- Large non-prompt score;
- Small background score.

After the selections, fit the invariant mass distribution:

- signal \rightarrow gaussian;
- background \rightarrow parabola.

The fit gives the Raw Yield and the amount of background.

Can we separate the non-prompt from the prompt hadrons? Not from the invariant mass distribution, but...

After the selections, fit the invariant mass distribution:

- signal \rightarrow gaussian;
- background \rightarrow parabola.

The fit gives the Raw Yield and the amount of background.

Can we separate the non-prompt from the prompt hadrons? Not from the invariant mass distribution, but...

After the selections, fit the invariant mass distribution:

- signal \rightarrow gaussian;
- background \rightarrow parabola.

The fit gives the Raw Yield and the amount of background.

Can we separate the non-prompt from the prompt hadrons? Not from the invariant mass distribution, but...

Threshold changes \rightarrow non-prompt fraction changes!

By construction, the selection efficiency is different for prompt and non-prompt.

Idea:

- study the raw yield using different selections;
- measure the selection efficiency
- combine the two and measure the prompt fraction

Threshold changes \rightarrow non-prompt fraction changes!

By construction, the selection efficiency is different for prompt and non-prompt.

Idea:

- study the raw yield using different selections;
- measure the selection efficiency
- combine the two and measure the prompt fraction

Threshold changes \rightarrow non-prompt fraction changes!

By construction, the selection efficiency is different for prompt and non-prompt.

Idea:

- study the raw yield using different selections;
- measure the selection efficiency;
- combine the two and measure the non-prompt fraction

Measuring the non-prompt fraction

Different selections \rightarrow different proportions between prompt and non-prompt contributions.

To measure the non-prompt fraction^[1]:

- define many selections, for each:

 $Y_i = \varepsilon_i^{\mathbf{p}} N^{\mathbf{p}} + \varepsilon_i^{\mathbf{np}} N^{\mathbf{np}}$

Raw yields (from data), Efficiencies × acceptance (from MC), True yields (Unknown parameters).

- An overdetermined system of equation is defined.
- Solve numerically for $N^{\mathbf{p}}$ and $N^{\mathbf{np}}$.

[1] <u>JHEP 05 (2021) 220</u>

Solving the system

The system to solve is:

$$\begin{cases} Y_1 &= \varepsilon_1^{\rm p} N^{\rm p} + \varepsilon_1^{\rm np} N^{\rm np} \\ & \dots \\ Y_n &= \varepsilon_n^{\rm p} N^{\rm p} + \varepsilon_n^{\rm np} N^{\rm np} \end{cases}$$

As the system is overdetermined, and there are statistical uncertainties, the quantity

$$\delta_i = Y_i - \varepsilon_i^{\rm p} N^{\rm p} - \varepsilon_i^{\rm np} N^{\rm np}$$

will be non-zero.

To find the best-fit true yields, a χ^2 is defined,

$$\chi^2 = \boldsymbol{\delta}^T C^{-1} \boldsymbol{\delta}$$

Where C is the covariance matrix between the δ_i

Prompt and non-prompt contributions

Separation between prompt and non-prompt!

- The **prompt** contribution decreases rapidly;
- The non–prompt contribution is ~constant.

Tight selection \rightarrow large non-prompt fraction:

$$f_{\rm np} = \frac{\varepsilon_i{}^{\rm np} N^{\rm np}}{\varepsilon_i{}^{\rm p} N^{\rm p} + \varepsilon_i{}^{\rm np} N^{\rm np}}$$

[1] <u>JHEP 05 (2021) 220</u>

Daniel Battistini

The non–prompt Λ^+ cross section

Non-prompt cross section:

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}}\right)^{\mathrm{np}} = \frac{f^{\mathrm{np}}Y}{2\,\Delta p_{\mathrm{T}}\,\varepsilon^{\mathrm{np}}\,BR\,\mathcal{L}_{\mathrm{int}}}$$

Measured in 2 decay channels: $\Lambda_{c}^{+} \rightarrow pK_{S}^{0}$ and $\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}$.

Theoretical model: FONLL^[1] using:

- $\Lambda_{\rm b}^0$ fragmentation fractions from LHCb^[2],
- folding with $H_b \rightarrow \Lambda_c^+ + X$ decay from PYTHIA8.

For both non–prompt D^0 mesons and Λ_c^+ baryons the data is compatible with the model!

[1] <u>IHEP 03 (2001) 006</u> [2] Phys. Rev. D 100, 031102(R)

Daniel Battistini

The fragmentation of beauty is accessible via: non-prompt $\,\Lambda_c^+/\,\text{non-prompt}\,\,D^0$ ratio

Major contributor to the Λ_c^+ yield: Λ_b^0 Minor contribution from B mesons.

Similar ratios for prompt and non–prompt.

Non-prompt $\Lambda_{c}^{+} \approx \Lambda_{b}^{0}$.

The fragmentation of beauty is accessible via: non-prompt $\,\Lambda_c^+/\,\text{non-prompt}\,\,D^0$ ratio

Major contributor to the Λ_c^+ yield: Λ_b^0 Minor contribution from B mesons.

Similar ratios for prompt and non–prompt.

Non-prompt $\Lambda_{c}^{+} \approx \Lambda_{b}^{0}$.

The fragmentation of beauty is accessible via: non-prompt $\,\Lambda_c^+/\,\text{non-prompt}\,\,D^0$ ratio

Major contributor to the Λ_c^+ yield: Λ_b^0 Minor contribution from B mesons.

Similar ratios for prompt and non–prompt.

Non-prompt $\Lambda_{c}^{+} \approx \Lambda_{b}^{0}$.

The fragmentation of beauty is accessible via: non-prompt $~\Lambda_c^+/$ non-prompt D^0 ratio

FONLL tested using fragmentation fractions from

- **LHCb**^[1] (pp collisions),
- e^+e^- collisions,

and folded with the $H_b \rightarrow \Lambda_c^+ + X$ decay, using:

- PDG decay table (only measured decays),
- PYTHIA8 decay table (also unmeasured decays).

Enhanced beauty–baryon production w.r.t e⁺e⁻ collisions.

[1] Phys. Rev. D 100, 031102(R)

The fragmentation of beauty is accessible via: non-prompt $~\Lambda_c^+/$ non-prompt D^0 ratio

FONLL tested using fragmentation fractions from

- LHCb^[1] (pp collisions),
- e^+e^- collisions,

and folded with the $H_b \rightarrow \Lambda_c^+ + X$ decay, using:

- PDG decay table (only measured decays),
- PYTHIA8 decay table (also unmeasured decays).

Enhanced beauty–baryon production w.r.t e⁺e⁻ collisions.

[1] <u>Phys. Rev. D 100, 031102(R)</u>

The fragmentation of beauty is accessible via: non-prompt $~\Lambda_c^+/$ non-prompt D^0 ratio

FONLL tested using fragmentation fractions from

- LHCb^[1] (pp collisions),
- e^+e^- collisions,

and folded with the $\,H_b \to \Lambda_c^+ + X\,$ decay, using:

- PDG decay table (only measured decays),
- PYTHIA8 decay table (also unmeasured decays).

Enhanced beauty–baryon production w.r.t e⁺e⁻ collisions.

[1] <u>Phys. Rev. D 100, 031102(R)</u>

Conclusions

Results:

- First measurement of non-prompt Λ_c^+ cross section;
- Λ_c^+/D^0 : better agreement with the PYTHIA decay table: indication of missing decay in the PDG;
- Non-prompt $\Lambda_c^+/D^0 \rightarrow$ hadronisation of beauty is not independent of the collision system.

Outlook

- Improve the measurement with the Run 3 data;
- Study the non-prompt Λ_c^+ production in Pb-Pb collisions to characterize the QGP.

