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Metastability in the quantum world
False vacua and quantum tunneling

⌅ In a quantum theory, tunneling from one minimum of the potential to another is possible
due to quantum fluctuations.

⌅ If a local minimum is not the absolute minimum of the potential, it is therefore
meta-stable and we refer to it as a false vacuum.
Example: scalar Ï4 theory in euclidean spacetime

S[Ï] =
⁄

dDx
31

2ˆµÏ(x)ˆµÏ(x) + V (Ï(x))
4

with V (Ï) = ≠m2

2 Ï2 + g

3Ï3 + ⁄

4 Ï4 (1)

⌅ The field in the false vacuum will eventually tunnel through the potential barrier and land
on a more stable minimum. We call this phenomenon false vacuum decay.
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Metastability in the quantum world
False vacua and quantum tunneling

Plot from https://arxiv.org/pdf/astro-ph/0005003.pdf
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The Higgs potential

Plot from Bass, S.D., De Roeck, A. & Kado, M. The Higgs boson implications and prospects for future
discoveries. Nat Rev Phys 3, 608–624 (2021). https://doi.org/10.1038/s42254-021-00341-2
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The Higgs false vacuum decay
Is the Standard Model unstable?

Plot from https://arxiv.org/pdf/1205.6497.pdf
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The Higgs false vacuum decay
Is the Standard Model unstable?

⌅ Current measurements suggest that the
Higgs field sits in a metastable vacuum.

⌅ An estimate for the lifetime of the
Standard Model, namely for the decay
rate of the Higgs field, can be obtained
through known methods.

⌅ However, these rely on approximations
not entirely valid in this case.
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How do we evaluate the vacuum decay rate?
A saddle point approximation

⌅ The decay rate is given by the imaginary part of the ground state energy in the false
vacuum.

Z =
ÿ

n

e≠—En ≠æ E0 = ≠ lim
—æŒ

1
—

log Z , — = Euclidean time (2)

⌅ To evaluate it, we can deploy a technique developed by Callan & Coleman: the Coleman
bounce Ïb(x), a non homogeneous solution to the equations of motion that interpolates
between the false and the true vacuum and then bounces back.

⌅ We evaluate Z using a saddle point approximation around the bounce.

� Ã Z[Ïb]
Z[ÏF V ] Ã

3 det SÕÕ[Ïb]
det SÕÕ[ÏF V ]

4≠ 1
2

e≠S[Ïb]+S[ÏF V ] (3)
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The Fubini-Lipatov instanton
The issue with scale invariance

⌅ A decent approximation for the Higgs potential is

V (Ï) = ≠⁄

4 Ï4 with ⁄ > 0 (4)

⌅ This theory admits a Coleman bounce: the Fubini-Lipatov instanton.

ÏFL(x) =
Ú

8
⁄

R

R2 + (r ≠ r0)2 , r2 = xixi (5)

⌅ We can identify two invariances of the theory
⇤ Position of the centre of mass r0 æ translations æ translational zero modes Ïtr Ã ˆiÏFL
⇤ Instanton size R æ dilatation æ dilatational zero mode Ïdil Ã ˆRÏFL
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The zero and the negative modes

⌅ The decay rate (3) is unfortunately divergent

(det SÕÕ[Ïb])≠1/2 ≥
A

Ÿ

n

⁄n

B≠1/2
zero modes≠≠≠≠≠≠æ “

1
0≠1/2

2
” æ Œ (6)

⌅ We would like to define a procedure for extracting the zero modes from the evaluation of
the determinant, and obtain a final result.

⌅ Strategy:
1. Subtract the translational zero modes from the definition of the determinant.
2. Add 1-loop quantum corrections and renormalize. This will break scale invariance,

eliminating the remaining dilatational zero mode.

⌅ The operator SÕÕ[Ïb] also contains a negative mode, which is responsible for the
imaginary part of the ground state energy.
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Resolvent Method

⌅ Green function’s problem

SÕÕ[Ï]G(x, xÕ) = ”(x ≠ xÕ) , where SÕÕ[Ï] = ≠⇤x + V ÕÕ(Ï(x)) (7)

⌅ Spectral decomposition

G(x, xÕ) =
⁄

d⁄
f⁄(x)f⁄(xÕ)

⁄
(8)

⌅ Define
(SÕÕ[Ï] + s)G(s; x, xÕ) = ”(x ≠ xÕ) (9)

then

log det SÕÕ[Ïb]
det SÕÕ[ÏFV] = ≠

⁄
dx

⁄ Œ

0
ds [Gbounce(s; x, x) ≠ GFV(s; x, x)] (10)
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Subtracting the zero modes

⌅ Define the subtracted Green’s function as orthogonal to the space of zero modes
⁄

dxÕG‹(x, xÕ)„0(xÕ) = 0 (11)

⌅ Differential equation for the subtracted Green’s function

SÕÕ[Ï]G‹(x, xÕ) = ”(x ≠ xÕ) ≠
ÿ

„0(x)„ú
0(xÕ) (12)
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Quantum corrections

⌅ 1-loop quantum corrections to the bounce equation

≠⇤Ï(1)
b (x) + V Õ(Ï(1)

b (x)) + Ï(1)
b (x)�(1)

ren(x(Ï(1)
b )) = 0 (13)

⌅ Quantum corrected equation for the 2-point function
Ë
≠⇤ + V ÕÕ(Ï(1)

b (x)) + �(1)
ren(x(Ï(1)

b ))
È

G1≠loop(x, xÕ)

+
⁄

dyÏ(1)
b (x)�(x, y)Ï(1)

b (y)G1≠loop(y, xÕ) = ”(x ≠ xÕ)
(14)

and

�(x, y) = ”�(1)
ren(x(Ï(1)

b ))
”Ï(1)

b (y)
(15)

Matthias Carosi | False Vacuum Decay and Functional Determinants | 11/05/2022 12

0

•

•\☒



Challenges and outlook
What do we learn about functional determinants?

⌅ To evaluate functional determinants in a proper way we use the resolvent method. This
can be nicely extended to include quantum corrections but presents a number of
challenges:

1. Finding the Green’s function in the space orthogonal to the zero modes is hard!
2. Quantum corrections to the bounce and to the Green’s function can only be evaluated

self-consistently.
3. Quantum corrections to the Green’s function equation include non-local terms which make it

impossible to evaluate without defining some cut-off procedure.
⌅ The next steps would be

1. Obtain a numerical result for the decay rate at 1-loop.
2. Include the effects of additional fields (fermionic and bosonic).
3. Study the behavious of functional determinants when transforming the operators.
4. Eventually yield a more precise evaluation of the SM lifetime.
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