MAD MAX and the post-inflationary wasteland. Ringberg 2021

Johannes Diehl

QCD Axion: Why do we care?

- Introduced to solve the CP problem of QCD
- Peccei, Quinn: global chiral $U(1)_{PQ}$ symmetry
- complex scalar field w/ spont. sym. breaking potential
 → mexican hat
- Breaking before inflation ("pre-inflationary"). \rightarrow only one θ
- Breaking after inflation ("post-inflationary")
 → multiple values for θ, structures which can
 decay

QCD Axion: Why do we care?

- Pretty pathetic CDM candidate so far:
 - No mass
 - No interactions
- Noether: symmetry = conserved current, charge
- QFT anomaly: current not entirely conserved \rightarrow mexican hat tilted $\rightarrow m_a \sim 10^{-5}~{\rm eV}$
 - N QCD anomaly coefficient
 - *E* QED anomaly coefficient
- Which particles have PQ charges?
 - KSVZ: new heavy quarks
 - DFSZ: all SM quarks, second Higgs

 Observes local DM density on earth via axionphoton coupling scanning over photon-frequencies

Haloscope signal strength

$$\frac{dP}{d\omega} \propto \frac{\rho_a \ g_{a\gamma}^2(E/N)}{m_a^2} \cdot f(v_{DM})$$

- m_a axion mass
- ρ_a axion energy density
- $f(v_{DM})$ dark matter velocity distribution
- $g_{a\gamma}(E/N)$ axion-photon coupling (which depends on anomaly ratio E/N.

Pre-inflationary Problems

- $\rho_a \neq \rho_{DM}$!
- Seems to be increasing

DePanfilis+ 87	h a search for galactic axions in the frequency range $1.09 < f_a$ h $\Gamma_a \le 200$ Hz we obtain the experimental limit $(g_{a\gamma\gamma}/m_a)^2 \rho_a$ ction is $(g_{a\gamma\gamma}/m_a)^2 \rho_a = 3.9 \times 10^{-44}$ with $\rho_a = 300$ MeV/cm ³ . We
ADMX 09	FIG. 5: Axion-photon coupling excluded at the 90% confidence level assuming a local dark matter density of 0.45 GeV/cm ³ for two dark matter distribution models. The
ADMX 18, 21	whereas the N-body filter used a local dark matter density of 0.63 GeV/cm^3 . Regions where there are gaps in the data are

• Assumption: homogeneous

 $f(v_{DM})$

Relatively accurate by now

Main Freedom: Which SM particles have what PQ charge?

Main Freedom: Properties of new quark?

Post-inflationary Problems

- Three components: diffuse, miniclusters, streams
- Encounter rate
 - minicluster ~ $10^{-4} 10^{-6}$ 1/year
 - Stream \sim every few years
- Domain Walls produce too much DM (if $N_{DW} > 1$) \rightarrow phenomenologically challenging

Post-inflationary Problems

- MADMAX @ $\sim 10^{-4} {\rm eV}$: Axion production pre-inflation and post-inflation possible
- General problem: Prediction for $g_{a\gamma}(E/N)$
- Post-inflation problems:
 - Domain walls produce too much DM
 - Clumpy DM consisting of homogeneous, minicluster and stream component → invisible to MADMAX
- Next year: How to get all this under control!

MADMAX plan to find the axion

Dielectric
 boundary in
 magnetic field
 Step in induced E
 field leads to
 photon emission
 Problem:
 Which frequency

(i.e. mass)?

Huge Power Boost $\boldsymbol{\beta}$

Enormous signal

