KATRIN, TRISTAN, and beyond

Susanne Mertens Max Planck Institute for Physics & Technical University Munich

Neutrinos

- What is their mass and its origin?
- Is the neutrino its own antiparticle?
- Are there more than just three neutrinos?

Unique probe: Beta Decay

General idea

Discovery of $0\nu\beta\beta$:

- Shed light on matter-antimatter asymmetry
- Half life reveals neutrino mass $\frac{1}{T_{1/2}^{0\nu}} = G_{0\nu}(Q,Z) \cdot |M^{0\nu}|^2 \cdot m_{\beta\beta}^2$

Key requirements:

- Large exposure (tonne-scale)
- Excellent energy resolution (~ 1% @ $Q_{\beta\beta}$)
- Low background (< 1 cts/year/t/ROI)

LEGEND Experiment

- Search for $0\nu\beta\beta$ in ⁷⁶Ge
- Staged approach
 - LEGEND-200 (200 kg of Ge detectors)
 - LEGEND-1000 (1-ton of Ge detectors)
- $T_{1/2}$ (3 σ DS) > 10²⁸ yr
- $m_{\beta\beta} < 10 17 \text{ meV}$ (inverted ordering)
- More by Iris tomorrow

Our contributions

• Electronics integration for LEGEND-200

M. Willers, tech lead for electronis

• Development of ASIC-based read-out for LEGEND-1000

F. Edzards *et al* 2020 *JINST* **15** P09022

• Surface background characterization

F. Edzards, L. Hauertmann, et al Particles 4 (2021) 4, 489-511

M. Willers (PD) F. Edzards (PD)

F. Henkes (MSc)

Thanks to Iris group

Unique probe: Beta Decay

General idea

Direct neutrino mass measurement

- Independent of neutrino nature
- Independent of cosmology

Key requirements:

- Strong tritium source (10¹¹ decays/s)
- Excellent energy resolution (~ 1 eV)
- Low background (< 100 mcps)

KATRIN

- Experimental site: Karlsruhe Institute of Technology (KIT)
- International Collaboration (150 members)
- Design sensitivity: 0.2 eV (90% CL)
 (1000 days of measurement time)

HHT HHP HHT

KATRIN Working Principle

KATRIN Working Principle

KATRIN Working Principle

KATRIN Data Taking Overview

KATRIN Data Taking Overview

KATRIN Data Taking Overview

C. Wiesinger (PD) Schwemmer (PhD) C. Karl (PhD) C. Köhler (PhD) L. Schlüter (PhD) M. Weidenthaler (MSc) F. Kellerer (MSc) X. Stribl (MSc) T. Lasserre (staff)

MPP analysis team

MC propagation technique

- Systematics propagated by 10⁵ fits
- Developed by M. Slezak and C. Karl

Covariance matrix method

- Systematics propagated via cov-matrix obtained from multiple simulations of the spectrum
- Developed by T. Lasserre and L. Schlüter

Result of 2nd campaign

Main achievements wrt. 1st campaign:

- tritium activity increased by a factor of 4
- background reduced by 25%

Final result:

•

- total statistics: 4 million events
- excellent goodness-of-fit: p-value = 0.8
- best fit: $m_{\nu}^2 = (0.26^{+0.34}_{-0.34}) \text{eV}^2$ (stat. dom.)
 - new limit: $m_{\nu} < 0.9 \text{ eV}$ (90% CL)

Historical context

• KATRIN (2021):

first direct neutrino-mass experiment to reach sub-eV sensitivity and limit

- 1st and 2nd campaign combined result: $m_{\nu}^2 = (0.11^{+0.33}_{-0.33}) eV^2$
- 1st and 2nd campaign combined limit:

 $m_{
m
u} < 0.8$ eV (90% CL)

Outlook

+ many more to come

Outlook – reduced background

Outlook – new analysis strategy

Thanks to the Origins Data Science Lab

New Physics with KATRIN

0.8 0.5 Accessible in current Active 0.4 data sets branch Active 0.3 branch 0.2 Sterile branch Sterile branch 0.1

Susanne Mertens (MPP, TUM)

Sterile neutrinos

eV-scale sterile neutrino search

– Mainz 95 % C.L.

- – Troitsk 95 % C.L.
- Prospect 95 % C.L.
- DANSS 95 % C.L.
- Daya Bay 90 % C.L.
- Double Chooz 95 % C.L.
- Stereo 95 % C.L.
- RAA 95 % C.L.
- BEST + GA 95.45 % C.L.
- Neutrino-4 2 σ
- KATRIN (KSN1) 95 % C.L.
- KATRIN (KSN1+2)
- sensitivity 95 % C.L.
- Projected KATRIN final sensitivity 95 % C.L.

- ✓ Improve MAINZ and TROITSK limit
- ✓ Improve exclusion with respect to DANSS, PROSPECT, and STEREO
- ✓ Test recent interesting results from NEUTRINO-4 and BEST

KATRIN Collab., Phys. Rev. Lett. 126, 091803 (2021)

T. Lasserre

L. Schlüter M.Slezak C. Köhler X. Stribl

keV-scale sterile neutrinos

- Idea: make use of the KATRIN source to explore full beta spectrum to search for BSM physics
- Challenge: Precise modelling of full tritium spectrum with all experimental effects
 → work in progress

Mertens et al, Phys.Rev. D91 (2015) 4, 042005 Mertens et al, JCAP 1502 (2015) 02, 020

keV-scale sterile neutrinos

- Idea: make use of the KATRIN source to explore full beta spectrum to search for BSM physics
- Challenge: Precise modelling of full tritium spectrum with experimental effects
- Challenge: New multi-pixel detector system

Tritium source:

 10^{11} decays/s

V ESTERESTER

T. Houdy (PD) F. Edzards (PD) A. Onillon (PD) D. Siegmann (PhD)

K. Urban (PhD) L. Wunderl (MSc) D. Spreng (MSc) C. Bruch (MSc) C. Forstner (MSc)

Signal rate of up to 10¹⁰ electrons/s

Mertens et al, Phys.Rev. D91 (2015) 4, 042005 Mertens et al, JCAP 1502 (2015) 02, 020

TRISTAN detector design

Silicon drift detector (SDD) technology

✓ Capability of handling high rates (> 10⁸ cps)
 ✓ Excellent energy resolution (300 eV @ 20 keV)
 ✓ Large area pixels (3 mm diameter)

Thanks to the Max Planck Semiconductor Laboratory

TRISTAN detector design

Technical challenges

- $\,\circ\,$ Largest SDD array ever operated
- $\,\circ\,$ Focal plane design

Thanks to D. Fink and A. Sedlak

- KATRIN environment (UH vacuum, B-field)
- Precise modelling/calibration of electron detector response

e⁻

4 cm Full detector (3000 SDD pixel) 3 mm Detector module (166 SDD pixel)

Detector pixel

SDD characterization

✓ Excellent performance for x-rays

- S. Mertens et al, J. Phys. G46 (2019)
 - ✓ Linearity (0.1%)
 - \checkmark Noise (10 e at 1µs shaping time)
 - ✓ Resolution (140 eV @ 6 keV)

✓ Detailed characterization with electrons (electron microscope, krypton, e-gun, laser)

Scaling up: 166-pixel module

Recent Highlights

- ✓ Largest SDD array ever operated (planar)
- ✓ Successful operation of 3D module in KATRIN monitor spectrometer (-40° C, 10⁻⁹ mbar, 0.4 T)

Staged approach

- Integration of 9 modules in KATRIN beamline in 2024
- Option of scaling up to 21 modules

Spin off's: SDDs for...

IAXO: Solar axion experiment

- Member of IAXO since 2021
- Challenge: ultra-low background 10⁻⁷ c/s/keV/cm² (1 10 keV)
- First measurements in UGL and design optimizations ongoing

ComPol: compton polarimeter in a Cube-Sat to observe hard x-rays from Cygnus X1

- Part of ORIGINs Laboratory Rapid Space Mission (LRSM)
- Test launch to ISS planned for 2022/2023

Posdocs

- Michael Willers
- Frank Edzards
- Anthony Onillon
- Christoph Wiesinger
- Tobias Bode
- Thibaut Houdy
- Martin Slezak

PhD

- Korbinian Urban
- Christoph Köhler
- Christian Karl
- Lisa Schlüter
- Daniel Siegmann
- Matthias Meyer
- A. Schwemmer
- Frank Edzards
- Anna Pollithy
 - im Brunst

- Master
- Florian Henkes
- Cynthia Glas
- Katrin Geigenberger
- Lena Wunderl
- Xaver Stribl
- Matthias Weidenthaler
- David Casado
- Jakov Kholodkov
- Johannes Wickles
- Vikas Gupta
- Alessandro Schwemmer
- Manuel Lebert
- Fotis Megas
- Cornelius Schatz
- Madlen Steven
- Pablo Morales
- Dominik Fuchs
- Martin Ha Minh
- Federico Roccati

Bachelor

- Juan Ulloa Beteta
- Daniela Spreng
- Christina Bruch
- Christian Forstner
- Xavier Pawlowski

Interns

- Thierry Lasserre
- Aude Glaenzer
- Paul Ripoche
- Nathan Le Guennic
- Joel Dai
- Aidan Wright
- Tiziano Bevilacqua
- Gulden Othman
- Julieta Gruszko
- Alexey Lokhov

-36

Thanks to the MPP for a great support during my MPRG

Susanne Mertens Max Planck Institute for Physics