Amplitudes.meet Cosmology

Pado Benincasa

Max Planck Institut für Physik
(Quantum Field Theory Department)
13 December 2021 - MPP Project Review

dff ξ_{r} Scattering Amplitudes: The Group

Paolo Benincasa

Nick Early

Markus Ebert

Johannes Henn

Vera Kudrin

Antonela Matijasic

Vasily Sotnikov

Julian Miczajka

William J. Torres Bobadilla

Sorana Scholtes

Alex Tumanov

Anders Schreiber

Fabian Wagner

\&FT $\mathcal{E}_{\text {E Sattering Amplitudes: Our Research }}$

\&FT $\mathcal{E}_{\text {K }}$ Scattering Amplitudes: Our Research

QFT \mathcal{E} Scattering Amplitudes: Our Research

QfT E Scattering Amplitudes: Our Research

QFT E Scattering Amplitudes: Our Research

Scattering Amplitudes: Physics at Accessibly-Dligh Energies

Unitarity

Locality

Causality,

三

Scattering Amplitudes: Physics at Accessibly-Vligh Energies
 Unitarity
 Three-Particle Amplitudes

Locality

Causality

Scattering Amplitudes: Physics at Accessibly-Hiigh Energies

Unitarity

Locality

Causality

Three-Particle Amplitudes

strong

e.m.

weak

gravity

> Four-Particle Amplitudes

- Particles: $s=0,1 / 2,1,3 / 2,2$ - Yang's (Weinberg-Witten) theorem
- Charge conservation (spin 1)
- Equivalence principle (spin 2)
- Spin-1 self-interactions for just
- Graviton uniqueness theorem different species
- $\mathcal{N}=1$ Sugra
- Spin > 2: No self-interactions; no interactions with ≤ 2 No elementary massive particles.

What about Physics at Higher Energies?

Cosmology as window on the physics at ultra-high energies

What about Physics at Higher Energies?

Cosmology as window on the physics at ultra-high energies

$$
t \sim 10^{-32} s
$$

$$
\left.\mathcal{H}\right|_{\text {infl. }} \sim 10^{14} \mathrm{GeV}
$$

$\langle\phi \phi \ldots\rangle$
Ψ

What about Physics at Jigher Energies?

Cosmology as window on the physics at ultra-high energies
What are the rules governing physical processes at these energies?

$$
\left.\mathcal{H}\right|_{\text {infl. }} \sim 10^{14} \mathrm{GeV}
$$

What about Physics at Higher Energies?

Cosmology as window on the physics at ultra-high energies
What are the rules governing physical processes at these energies?

$\langle\phi \phi \ldots\rangle$

$$
\left.\mathcal{H}\right|_{\text {infl. }} \sim 10^{14} \mathrm{GeV}
$$

Questions

- Can we reach a similar understanding of u ltra-high energy processes as the accessibly-high energy ones?
- What is the imprint of causality and unitarity on the quantum mechanical observables in cosmology?

$$
\Psi[\phi], \quad\langle\phi \phi \ldots\rangle
$$

- What are their consequences?

What are the invariant properties that Ψ ought to satisfy in order to come from a consistent causal evolution in cosmological space-times?

- What is the most suitable language to describe the physics at this regime?

> A Twofold Way for Ultra-Figh Energy Processes

A Twofold Way for Ultra-Wigh Energy Processes

(1) The responsible way: Understanding Ψ as a function of boundary data

[Arkani-Hamed, P.B., Postnikov, 17]
[P.B., 19]
(2) The irresponsible way: Guessing the mathematical structure underlying Ψ

[Arkani-Hamed, P.B., Postnikov, 17]
[Arkani-Hamed, P.B., 18]
[P.B., 18-19]
[P.B., Parisi, 20]
[P.B., McLeod, Vergu, 20]
[P.B., Torres Bobadilla, to appear]
[P.B., Duaso Pueyo, w.i.p.]

The Responsible Way: Ψ and Boundary Data

What have we learnt?

[Maldacena, Pimentel, 12]. [Arkani-Hamed, P.B., Postnikov, 17]
[Arkani-Hamed, Baumann, Lee, Pimentel, 18]
(1) Factorisation properties

Scattering Amplitude \mathcal{A}

$\mathcal{A}_{\mathcal{L}} \times \tilde{\Psi}_{\mathcal{R}}$

$\mathcal{A}_{\mathcal{L}} \times \mathcal{A}_{\mathcal{R}}$

The Responsible Way: Ψ and Boundary Data

What have we learnt?

[Maldacena, Pimentel, 12]. [Arkani-Hamed, P.B., Postnikov, 17]
[Arkani-Hamed, Baumann, Lee, Pimentel, 18]
(1) Factorisation properties

Scattering Amplitude \mathcal{A}

$\mathcal{A}_{\mathcal{L}} \times \tilde{\Psi}_{\mathcal{R}}$

$\mathcal{A}_{\mathcal{L}} \times \mathcal{A}_{\mathcal{R}}$
(2) Feynman-like tree theorem:

The Responsible Way: Ψ and Boundary Data

What have we learnt?

[Maldacena, Pimentel, 12], [Arkani-Hamed, P.B., Postnikov, 17]
[Arkani-Hamed, Baumann, Lee, Pimentel, 18]
(1) Factorisation properties

Scattering Amplitude \mathcal{A}

$\mathcal{A}_{\mathcal{L}} \times \tilde{\Psi}_{\mathcal{R}}$

$\mathcal{A}_{\mathcal{L}} \times \mathcal{A}_{\mathcal{R}}$
(2) Feynman-like tree theorem:

(3) Cosmological optical theorem:
[Goodhew, Jazayery, Pajer, 20], [Melville, Pajer, 21]

$$
\psi_{n}\left(\left\{E_{j}\right\}\right)+\psi_{n}^{\dagger}\left(\left\{-E_{j}\right\}\right)=-\sum_{\text {cuts }} \psi_{n} \quad\left[\begin{array}{l}
\text { [Baumann, Chen, Duaso Pueyo, Joyce, Lee, Pimentel, 21] } \\
\text { [Meltzer, 21] }
\end{array}\right.
$$

The Responsible Way: Ψ and Boundary Data

What have we learn?

[Maldacena, Pimentel, 12]. [Arkani-Hamed, P.B., Postnikov, 17]
[Arkani-Hamed, Baumann, Lee, Pimentel, 18]
(1) Factorisation properties

Scattering Amplitude \mathcal{A}

$\mathcal{A}_{\mathcal{L}} \times \tilde{\Psi}_{\mathcal{R}}$

$\mathcal{A}_{\mathcal{L}} \times \mathcal{A}_{\mathcal{R}}$
(2) Feynman-like tree theorem:

[Goodhew, Jazayery, Pajer, 20], [Melville, Pajer, 21]
(3) Cosmological optical theorem:

$$
\begin{aligned}
& \psi_{n}\left(\left\{E_{j}\right\}\right)+\psi_{n}^{\dagger}\left(\left\{-E_{j}\right\}\right)=\left(\sum_{\text {cuts }} \psi_{n}\right) \text { [Baumann, Chen, Duaso Pueyo, Joyce, Lee, Pimentel, 21] } \\
& \text { Incorrect flat-space limit }
\end{aligned}
$$

The Responsible Way: Ψ and Boundary Data

What have we learn?

[Maldacena, Pimentel, 12], [Arkani-Hamed, P.B., Postnikov, 17]
[Arkani-Hamed, Baumann, Lee, Pimentel, 18]
(1) Factorisation properties

Scattering Amplitude \mathcal{A}

$\mathcal{A}_{\mathcal{L}} \times \tilde{\Psi}_{\mathcal{R}}$

$\mathcal{A}_{\mathcal{L}} \times \mathcal{A}_{\mathcal{R}}$
(2) Feynman-like tree theorem:

[Goodhew, Jazayery, Pajer, 20], [Melville, Pajer, 21]
(3) Cosmological optical theorem:

$$
\begin{aligned}
& \text { theorem: } \\
& \left.\qquad \psi_{n}\left(\left\{E_{j}\right\}\right)+\psi_{n}^{\dagger}\left(\left\{-E_{j}\right\}\right)=-\sum_{\text {cuts }} \psi_{n}\right) \\
& \text { Incorrect flat-space limit unique }
\end{aligned}
$$

[Goodhew, Jazayert, Gordon-Lee, Pajer, 21] [Baumann, Chen, Duaso Pueyo, Joyce, Lee, Pimentel, 21]

The Irresponsible Day: Guessing a New Language

What have we learnt?

Questions about Ψ in combinatoric-geometrical terms

Emergent Flat-Space Unitarity

Emergent Flat-Space Causality
[PB, 18], [PB, 19$],[P B$, McLea, Vergu, 20]
[P.B., 18], [P.B., 19], [P.B., McLeod, Vergu, 20]

Causality-like relations for Ψ

The Irresponsible Day: Guessing a New Language

What have we learnt?

[P.B., 18], [P.B., 19], [P.B., McLeod, Vergu, 20]

Questions about Ψ in combinatoric-geometrical terms

Emergent Flat-Space Unitarity

Emergent Flat-Space Causality

Causality-like relations for Ψ
(2) Reconstructing the wavefunction $\psi_{n}^{\text {tree }}$ from the flat-space amplitude $\mathcal{A}_{n}^{\text {tree }}$

The Irresponsible Way: Guessing a New Language

What have we learnt?
[Arkani-Hamed, P.B., Postnikov, 17], [Arkani-Hamed, P.B., 18]
[P.B., 18], [P.B., 19], [P.B., McLeod, Vergu, 20]

Questions about Ψ in combinatoric-geometrical terms

Emergent Flat-Space Unitarity

Emergent Flat-Space Causality

Causality-like relations for Ψ
(2) Reconstructing the wavefunction $\psi_{n}^{\text {tree }}$ from the flat-space amplitude $\mathcal{A}_{n}^{\text {tree }}$
[P.B., 18]
(3) Systematic procedure for classifying and writing down representations for ψ_{n} and \mathcal{A}_{n}
[P.B., Torres Bobadilla, to appear]

The Irresponsible Way: Guessing a New Language

What have we learnt?

[P.B., 18], [P.B., 19], [P.B., McLeod, Vergu, 20]

Questions about Ψ in combinatoric-geometrical terms

Emergent Flat-Space Unitarity

Emergent Flat-Space Causality

Causality-like relations for Ψ
(2) Reconstructing the wavefunction $\psi_{n}^{\text {tree }}$ from the flat-space amplitude $\mathcal{A}_{n}^{\text {tree }}$
[P.B., 18]
(3) Systematic procedure for classifying and writing down representations for ψ_{n} and \mathcal{A}_{n}
[P.B., Torres Bobadilla, to appear]

44 Invariant definition of unitarity, cutting rules as triangulations

The Irresponsible Way: Guessing a New Language

What have we learnt?

Questions about Ψ in combinatoric-geometrical terms

Emergent Flat-Space Unitarity

Emergent Flat-Space Causality

Causality-like relations for Ψ
(2) Reconstructing the wavefunction $\psi_{n}^{\text {tree }}$ from the flat-space amplitude $\mathcal{A}_{n}^{\text {tree }}$
[P.B., 18]
(3) Systematic procedure for classifying and writing down representations for ψ_{n} and \mathcal{A}_{n}
[P.B., Torres Bobadilla, to appear]

4 Invariant definition of unitarity, cutting rules as triangulations
[P.B., Duaso Pueyo, w.i.p.]
(5) Math: direct and graph theoretic way of finding triangulations of polytopes
[P.B., Torres Bobadilla, to appear]

Looking at the Future

- Reconstructing ψ_{n} from first principles.
- Constraints on the interactions from consistency conditions on ψ_{n}.
- Combinatoric-geometrical description for the full ψ_{n}.
- Further generalisations
- Are the causality-like relations an avatar of the causality of time evolution?
- Systematic exploration of the symmetries and how symmetries emerge in flat-space.
- From Ψ to $|\Psi|^{2}$ and to more general observables.
- What are the right observables?
- Formulating the most suitable language to describe processes at ultra-high energies IWhesthemanghatial|

Looking at the Future: We Are Still at the Beginning!

