Theory Predictions in the Precision Era

Javier Mazzitelli

MPP Project Review 2021, December 13th 2021

Theory Predictions in the Precision Era

Giulia Zanderighi Markus Ebert Gabriel Koole Alessandro Ratti Ulrich Haisch Javier Mazzitelli Daniele Lombardi Luc Schnell

Marius Wiesemann Darren Scott Silvia Zanoli Stefan Schulte

New Physics and Precision Calculations

- SM thoroughly tested at the Large Hadron Collider
- Higgs boson discovered in 2012
- No other new particles or new physics signals observed so far...
- Main focus is finding small new physics effects

- Precise predictions for the SM are always relevant...
- But they are indispensable to detect small deviations
- Theory needs at least to match experimental precision

Smoking gun new physics signal

Small deviations from the SM

LHC: Present and Future

- Experimental accuracy really impressive!
- W, Z, $\ensuremath{t\bar{t}}$ at the few percent level
- H and diboson at the 5% level
- Only a small fraction of total integrated luminosity

Current ~150 fb⁻¹ Run3: 300 fb⁻¹ (2024) HL-LHC: 3000 fb⁻¹ (~2040)

Experimental precision will only get better!

Demand for precision calculations

Quantum Chromodynamics

- QCD corrections fundamental in hadron collisions, very large corrections due to large value of strong coupling
- Running of $\alpha_S \rightarrow$ grows at low energies (large distances)
- LHC hard collissions in perturbative regime, but... (29)
- The physics of the proton (~1GeV) are not!

Factorization of long and short distances:

Photon and Lepton Induced Processes at the LHC

- Quarks and gluons inside the proton... and much more!
- At this level of precision or for some rare processes photon and lepton content is relevant

Lepton luminosities

$$\mathcal{L}_{ij} \equiv M^2 \int_0^1 dz \, dy \, f_i(z, M^2) \, \delta(M^2 - szy)$$
Probability to pick a parton "i" in the proton with momentum fraction z

First precise predictions for photon and lepton induced processes at the LHC:
opens up possibility to new measurements
backgrounds for BSM searches for rare processes involving leptons/photons

Buonocore, Nason, Tramontano, GZ '20-'21

Resonant Leptoquark Production

• Application: set stringent constraints to Leptoquark production

LHC, $\sqrt{s} = 13$ TeV

Buonocore, Haisch, Nason, Tramontano, GZ

Fixed Order Calculations

$$\sigma_{pp \to X} = \sum_{ij} \int dx_1 dx_2 f_i(x_1) f_j(x_2) \hat{\sigma}_{ij \to X} + \mathcal{O}(\Lambda/Q)$$
Uncertainties (indicative!)
LO $\to \mathcal{O}(100\%)$
NLO $\to \mathcal{O}(10\%)$
NNLO $\to \mathcal{O}(1\%)$
NNLO $\to \mathcal{O}(1\%)$
NNLO $\to \mathcal{O}(1\%)$

Higher-order calculations are very complex: large number of Feynman diagrams, intermediate divergencies, complicated phase-space integrations, etc... But this is not even the end of the story!

Fixed-order calculations look like this:

Small number of final-state particles

Free partons in the final state

Actual events are more complicated → more complex simulations are needed!

NNLO+PS

- seminal approaches for NLO+PS many years ago (POWHEG, MC@NLO)
- first NNLO+PS for simple $2 \rightarrow 1$ processes
 - MiNLO+reweighting [Hamilton, Nason, Zanderighi '12, + Re '13], [Karlberg, Hamilton, Zanderighi '14]
 - Geneva [Alioli, Bauer, Berggren, Tackmann, Walsh, Zuberi '13], [Alioli, Bauer, Berggren, Tackmann, Walsh '15]
 - * UNNLOPS [Höche, Prestel '14]

- MINNLO_{PS}: new approach with enormous potential [Monni, Nason, Re, MW, Zanderighi '19], [Monni, Re, MW '20]
 - * NNLO corrections extracted from analytic resummation formula $d\sigma^{(\text{sing})} \sim d\sigma^{(0)}_{c\bar{c}} \times \exp\left[-S_c(b)\right] \times \left[HC_1C_2\right]_{c\bar{c};a_1a_2} \times f_{a_1}f_{a_2}$
 - physically sound (no new unphysical scale)
 - * applicable beyond $2 \rightarrow 1$ processes (even beyond colour-singlet)
 - numerically efficient

NNLO+PS Timeline

NNLO+PS Timeline

MiNLO+rewe	ight _H	Z(ℓℓ) W(ℓ∨)		WH(ℓvH)	ZH(ℓℓH) H-	•bb (00⊣)	
Geneva					VVVV(&\	Vev) VVH	l(ℓvH)	₩γ(ℓνγ)
UNNLOPS			Z(ℓℓ)				H→ H→	bb gg
MiNNLO _{PS}							ΥY	ZZ(ℓℓℓℓ)
		н	Z(ℓℓ)				Zγ(4	?ey)
							\sim	™(ℓ∨ℓ ∨)
						н		ZZ(ℓℓℓℓ)
						Ζ(ℓℓ)	W(ℓv)	Ζγ(ννγ)
							tī	ZH(ℓℓH)×H→bb WH(ℓ∨H)×H→bb
2012	2013 20	014 20	2016	2017	2018 20		2021	2022

NNLO+PS Timeline

Zγ Phenomenology at the LHC

- * presence of **isolated photon** \rightarrow theoretically challenging
- * highly relevant as a probe for BSM (especially $Z \rightarrow \nu \bar{\nu}$)

Zγ Phenomenology at the LHC

- * $Z \rightarrow e^+e^-$ event can be fully reconstructed
- * presence of isolated photon \rightarrow theoretically challenging
- * highly relevant as a **probe for BSM** (especially $Z \rightarrow \nu \bar{\nu}$)

Good agreement with experimental data from ATLAS 36.1fb⁻¹ analysis!

WW Phenomenology at the LHC

- ✤ largest cross section among massive diboson processes
- ✤ direct access to anomalous triple gauge couplings
- ↔ no full event reconstruction due to neutrinos → high-accurate theoretical predictions required
- *analysis requires a jet-veto* → theoretical modelling important

Two-loop contributions evaluated with 4D cubic spline interpolation

Jet-veto requirement:

- * <u>Experimentally</u> needed to reduce top background
- Theoretically involved definition of WW cross section, due to diagrams with resonant top quarks and b final states:
- Interference with double-real diagrams
- Not separately finite for massless b quarks

ZZ Phenomenology at the LHC

[Buonocore, Koole, Lombardi, Rottoli, Wiesemann, Zanderighi '21]

- ★ smallest cross section among massive diboson processes, but very clean signature
- \diamond relevant for BSM searches
- ✤ important for constraining the Higgs width and Higgs couplings

Higgsstrahlung with H→bb decay

- * Needed for **precision measurement** in the Higgs sector
- One of the main production channels + largest branching fraction in decay
- * NNLO+PS accuracy in both production and decay

NNLO+PS for Heavy Quarks

- MiNNLO_{PS} method recently extended to top-quark pair production
- Qualitative advancement in the NNLO_{PS} field: first method beyond colour singlet
- Paving the way to more complicated processes
- Incredibly relevant for LHC phenomenology $\rightarrow ~40\%$ of analyses using $t\bar{t}$ predictions

[JM, Monni, Nason, Re, Wiesemann, Zanderighi '21]

Top-pair Production at NNLO_{PS}

• Results for stable top quarks:

• Excellent agreement with NNLO fixed-order, both in normalization and shape!

- Including top decays using ratio of tree-level decayed and undecayed MEs
- Both W bosons decaying leptonically, comparison to ATLAS analysis:

• Azimuthal angle between electron and muon \rightarrow spin correlations

- Including top decays using ratio of tree-level decayed and undecayed MEs
- W bosons decaying semi-leptonically, comparison to CMS analysis:

• Rapidity and p_T of leading jet coming from reconstructed W, and reconstructed $t\bar{t}$ invariant mass

- Including top decays using ratio of tree-level decayed and undecayed MEs
- Both W bosons decaying hadronically, comparison to ATLAS analysis:

• Rapidity and p_T of leading jet coming from reconstructed W, and reconstructed $t\bar{t}$ invariant mass

- Including top decays using ratio of tree-level decayed and undecayed MEs
- Both W bosons decaying hadronically, comparison to ATLAS analysis:

- Rapidity and p_T of leading jet coming from reconstructed W, and reconstructed $t\bar{t}$ invariant mass

The Higgs Potential

- Most of the SM already under scrutiny from LHC searches
- One sector barely explored so far: Higgs boson potential, responsible for EWSB

- Measuring or bounding the trilinear coupling is one of the main tasks of future LHC runs
- Two ways to measure λ

Higgs pair production

Loop-induced effects in other observables

HH at NNLO with Anomalous Couplings

• We consider the HEFT operators affecting HH production

$$\mathcal{L} \supset -m_t \left(\frac{c_t}{v} + \frac{h^2}{v^2} \right) - c_{hhh} \frac{m_h^2}{2v} h^3 + \frac{\alpha_s}{8\pi} \left(c_{ggh} \frac{h}{v} + \frac{c_{gghh}}{v^2} \frac{h^2}{v^2} \right) G^a_{\mu\nu} G^{a,\mu\nu}$$

 NLO corrections → full top mass dependence NNLO piece → Born-improved Heavy Top Limit

[[]de Florian, Fabre, Heinrich, JM, Scyboz '21]

HH at NNLO with Anomalous Couplings

• NNLO cross section can be parameterized in terms of anomalous couplings

$$\sigma_{\rm BSM}/\sigma_{\rm SM} = a_1 c_t^4 + a_2 c_{tt}^2 + a_3 c_t^2 c_{hhh}^2 + a_4 c_{ggh}^2 c_{hhh}^2 + a_5 c_{gghh}^2 + a_6 c_{tt} c_t^2 + a_7 c_t^3 c_{hhh} + a_8 c_{tt} c_t c_{hhh} + a_9 c_{tt} c_{ggh} c_{hhh} + a_{10} c_{tt} c_{gghh} + a_{11} c_t^2 c_{ggh} c_{hhh} + a_{12} c_t^2 c_{gghh} + a_{13} c_t c_{hhh}^2 c_{ggh} + a_{14} c_t c_{hhh} c_{gghh} + a_{15} c_{ggh} c_{hhh} c_{gghh} + a_{16} c_t^3 c_{ggh} + a_{17} c_t c_{tt} c_{ggh} + a_{18} c_t c_{ggh}^2 c_{hhh} + a_{19} c_t c_{ggh} c_{gghh} + a_{20} c_t^2 c_{ggh}^2 + a_{21} c_{tt} c_{ggh}^2 + a_{22} c_{ggh}^3 c_{hhh} + a_{23} c_{ggh}^2 c_{gghh} + a_{24} c_{ggh}^4 + a_{25} c_{ggh}^3 c_t$$

- We performed a fit and obtained the values of the a_i coefficients

[de Florian, Fabre, Heinrich, JM, Scyboz '21]

Limits from off-shell H production

- Both resonant and non-resonant contributions included
- Effect from SMEFT operators O_6 and O_H on self coupling (c₃) via loop corrections

[Haisch, Koole '21]

Projected Limits on c₃

- Projected limits for Run3 and HL-LHC have been derived
- · Compared to the projected limits from inclusive single-H production
- Bounds found to be competitive and complementary to the inclusive ones \rightarrow remove flat directions

Projections from double-Higgs production will strengthen the constraints

Summary

- Without clear NP signals, quest for BSM is focusing more in small deviations
- Precise theory predictions are in this context indispensable
- Big contributions to the field coming from our group in the last year:
 - NNLO_{PS} for diboson production
 - NNLO_{PS} for top-pair production
 - Precise determination of photon and lepton PDFs

'l'har

• Studies related to the Higgs self coupling

• ...

• Promising prospects for the future research activities!