Silicon Detectors in (low energy) Particle Physics

Susanne Mertens, MPP/TUM 30.9.2021

Standard Model of Particle Physics (SM)

- SM describes most phenomena observed
- But, we know that is cannot be complete
 - Theoretical problems: e.g. prediction of the Higgs mass (hierarchy problem)
 - Tensions between theory and highprecision experiments (e.g. magnetic moment of the muon)
 - Most pressing problem: it does not provide a suitable dark matter candidate
- Goal find physics beyond the SM!

Standard Model of Particle Physics (SM)

- SM describes most phenomena observed
- But, we know that is cannot be complete
 - Theoretical problems: e.g. prediction of the Higgs mass (hierarchy problem)
 - Tensions between theory and highprecision experiments (e.g. magnetic moment of the muon)
 - Most pressing problem: it does not provide a suitable dark matter candidate
- Goal find physics beyond the SM!

Beyond the Standard Model (SM)

"High Energy" Frontier Idea: produce a new particle at a collider

"Low-Energy" Frontier

Idea: find a small signal of new physics in a highprecision or low background measurement

Beyond the Standard Model (SM)

"High Energy" Frontier Idea: produce a new particle at a collider

Silicon detectors used at large scale "Low-Energy" Frontier

Idea: find a small signal of new physics in a highprecision or low background measurement

- Direct Dark Matter experiment
- Our galaxy is filled with dark matter (0.3 GeV/cm³)
- Goal: direct detection of dark matter particle on earth

- Dark matter search with CCDs at SNOLAB and later at Modane
- Dark matter particle (WIMP) scatters off a nucleus, recoil energy (~ keV) is detected (1 event/kg/year for 100 GeV WIMP)
- Advantages of CCDs:
 - low energy threshold (~eV) allows to detect small recoil energies (low mass WIMPs)
 - High spatial resolution allows for particle identification
- Challenge:
 - Low background
 - Large mass (~ kg)

- 16 Mpixel (15 μm x 15 μm)
- 675 µm thick (high-resistivity Si and low donor density for depletion at low voltage)
- Operated at 140 K
- 40-g total mass
- Produced at LBNL

Phys. Rev. Lett. 125 (2020) 241803

- Coherent Elastic Neutrino-Nucleus Scattering (CEvENS)
- Process first detected in 2017. Now, very topical field!
- CONNIE: Detection of CEvENS of reactor neutrinos with CCD detectors (< 1 count/day/10g)
- Challenge (similar as for DM search):
 - Low threshold (~ 10 eV)
 - Large mass (~ kg)
 - Low background
- So far, no detection. Upgrades are planned

- Coherent neutrino scattering experiment with reactor neutrinos and cryogenic detectors
- Active inner veto made of Si with pyramidic holding structures produced via wet chemical etching at HLL

SELENA Experiment

- Search for neutrinoless double beta decay (< 1 event/tonne/year)
- One of the most fundamental open questions in physics
- SELENA: Search for $0\nu\beta\beta$ in ^{82}Se with CMOS pixel array
- Advantages of CMOS pixel arrays:
 - Energy resolution
 - Spatial resolution \rightarrow signal identification
- Challenge:
 - Low background
 - Large mass (tonne scale)

e⁻

JINST12 (2017) P03022

- Next-generation solar axion search
- Axion = dark matter candidate
- Successor of successful CAST experiment

ΙΝ

• Used CCD detectors from HLL

Silicon Drift Detector

- Radiopure material ٠
- Challenge:

٠

٠

• Expect 1 count/year/keV/cm² \rightarrow low background

First measurements

- 7-pixel prototype detector on kapton PCB in shallow underground lab
- Bg: 1.2x10⁻⁵ counts/s/keV/cm² (ROI: 2.5 20 keV)

Next steps

- Optimize SDD layout (with integrated FET)
- Develop shielding concept
- Discussion with HLL ongoing

- experiment

- SuperKEKB (e+ e- collider) in Japan
- B-Factory (heavy particle with b-quark)
- Ultra-precise measurement of weak interaction parameters to find new physics
- Inner vertex detector system made of DePFET detectors from HLL
- Advantages:
 - Chip on sensor concept
 - Low mass, all-silicon device
 - High pixelization
 - Suitable for high rate application
- Started data taking in 2018/2019

TRISTAN

- Search for *sterile neutrinos* is ultra-high precision beta spectroscopy of tritium
- Sterile neutrinos = dark matter candidate

TRISTAN

- Search for *sterile neutrinos* is ultra-high precision beta spectroscopy of tritium
- Sterile neutrinos = dark matter candidate

Mertens et. al. Phys. Rev. D91 (2015) Mertens et. al. JCAP 1502 (2015)

The world's strongest tritium source @ KATRIN

➤KATRIN is designed to measure the neutrino mass (200 meV @ 90% CL)

First sub-eV limit published recently (PRL 123 (2019), PRL 126 (2021), PRD 104 (2021), arXiv:2105.08533 (2021))

TRISTAN detector design

- Silicon drift detector (SDD) technology
- Advantages:
 - Capability of handling high rates (> 10⁸ cps)
 - Excellent energy resolution (300 eV @ 20 keV for electrons)
- Challenge:
 - Application to electrons (thin deadlayer, understanding of response)

MPG

• Large-scale focal plane array

Full detector 21 x 166 pixels = 3486 pixels

25

Detector module 166 pixels

Characterization with electrons

- detailed characterization of entrance window + backscattering
- scanning electron microscope + evaporated krypton source

Characterization with electrons

✓ good understanding and modelling of electron response

 \checkmark thin effective entrance window: < 50 nm \rightarrow new technology under investigation

doi: 10.1109/NSS/MIC42677.2020.9507856

TRISTAN module

OHC copper cooling

and holding structure cooling link 166-pixel SDD with integrated JFT Lttore ASICs Rigid flex PCB

Silicon carbide (CeSic)

- Module (47 channel) is operating in KATRIN setup
- First 166-pixel spectra recorded @ Polimi
- Implementation of 9-modules in KATRIN in 2024

- Precision measurements of neutron decay parameters (lifetime, correlations of spin and momentum)
- Theoretically extremely well understood search for deviations from SM prediction
- Advantages of Si-detector
 - Energy resolution
 - Energy linearity
- Challenges
 - Detection of e⁻ with up to 1 MeV (Si-detector with ~mm thickness are needed)
 - ns timing resolution is important
 - Proton detection (e.g. via post-acceleration) (very thin deadlayer)

Forbidden beta decays

- Precision beta-spectroscopy of forbidden beta decays
- Access to parameters of importance for neutrino physics
- Challenges:
 - thick silicon detectors (mm-scale)
 - thin entrance window

SDD with veto system

M. Biassoni et al, arXiv:1905.12087

ComPol

- Compton Telescope (SDD + Scintillator) in a Cube Sat
- Goal: measure level of polarization of x-rays from Cygnus X-1

- Balloon flight in 2017
- Test launch to ISS planned for 2022 in the framework of the ORIGNS Laboratory of Rapid Space Missions (LRSM)

Туре	Example	Requirements	Technology
Rare event search	CONNIE, DAMIC, SELENA, IAXO	Low background, low threshold, particle identification	CCD, CMOS, or SDD
High-precision at collider	Belle-II	Low mass, high rates, high pixelization	DePFET
High-precision beta- spectrocopy	TRISTAN, PERC, forbidden beta decays	Thin entrance window, thick detectors, timing resolution	SDD or other?
Astroparticle physics	ComPol Cube-Satellite	Space proof, energy resolution, etc.	SDD

Conclusion

- Si-detectors (of all kinds) play a key role in the search for physics beyond the SM
 - Collider experiments
 - Direct Dark Matter and rare-event searches
 - High-precision spectroscopy
 - Astroparticle physics
- We look forward to working with advanced Si-detector technologies to advance particle physics

Conclusion

- Si-detectors (of all kinds) play a key role in the search for physics beyond the SM
 - Collider experiments
 - Direct Dark Matter and rare-event searches
 - High-precision spectroscopy
 - Astroparticle physics
- We look forward to working with advanced Si-detector technologies to advance particle physics

