Kulikov Models and the Emergent String Conjecture

- 2111.xxxx w/ Seung-Joo Lee
- 211y.yyyy w/ Seung-Joo Lee and Wolfgang Lerche

Timo Weigand Hamburg University

Ringberg - 08/11/2021 - p.1

Swampland Distance Conjecture

Within the web of Swampland Conjectures, special role played by **Swampland Distance Conjecture** [Ooguri, Vafa'06]:

At infinite distance in the moduli space of a consistent Quantum Gravity, a tower of infinitely many states becomes asymptotically light:

 $m(\Phi) \to m(\Phi_0) e^{-c\frac{\Delta\Phi}{M_{\rm Pl}}}$

with c = O(1) (Refined SDC [Baume, Palti][Kläwer, Palti]'16)

Swampland Distance Conjecture

Many successful tests in various corners of string landscape:

Example: Complex structure moduli of Type IIB compactifications Origin of towers:

4d N=2 BPS states from D3-branes wrapped on vanishing 3-cycles

[Grimm,Palti,Valenzuela'18] [Grimm,Li,Palti'18] [Grimm,Li,Valenzuela'19] . . . [Grimm'20] [Bastian,Grimm,van de Heisteeg'20/21]

[Blumenhagen,Kläwer,Schlechter,Wolf'18]

[Klemm, Joshi'19]

[Font, Herraez, Ibanez'19]

```
[Gendler, Valenzuela'20] [Palti'21]
```

[Kläwer'21]

What's the nature of the theory at infinite distance?

Emergent String Conjecture

Conjecture:

[Lee,Lerche,TW'19]

If a quantum gravity theory admits an infinite distance limit, then

- either it reduces to a weakly coupled string theory
 ⇒ infinite tower of string excitations
- or it decompactifies
 - \Rightarrow infinite tower of Kaluza-Klein excitations

Confirmed in non-trivial (non-perturbative) setups:

Existence and uniqueness of
emergent critical string(Quant
compaceKähler moduli F/M/IIA-theory in 6d/5d/4d[Lee,Lerche,TW4d N=2 hypermultiplets[Baume,MarcheM-theory on G2[Xu'20]4d N=1 F-theory[Lee,Lerche,TW+ corrections[Lee,Kläwer,TWcf. Distant axionic string conjecture[Lanza,Marches

(Quantum) geometry of string compactification [Lee,Lerche,TW'18,'19,'20] [Baume,Marchesano,Wiesner'19] [Xu'20] [Lee,Lerche,TW'19] [Lee,Kläwer,TW,Wiesner'20] [Lanza,Marchesano,Martucci,Valenzuela'20/21] Ringberg - 08/11/2021 - p.4

This Talk

- Aim: Understand physics on the boundary of complex structure (CS) moduli spaces
- Method: Detailed analysis of degenerating geometry at infinite distance in CS moduli space
- First step: Analyse infinite distance CS degenerations of elliptic K3 surfaces \iff Physics of 8d F-theory on boundary on CS moduli space
- Main results:
- 1) Math: Classification of CS infinite distance limits of elliptic K3 Refinement of Kulikov degenerations
 - Type II: Type II.a and II.b [Clingher, Morgan'03] [Baily-Borel] [Mumford]
 - Type III: Type III.a and Type III.b [Lee,TW'21] cf.[Alexeev,Brunyante,Engel'20]
- 2) Physics: Characterisation of infinite distance limits for F-theory on K3

This Talk

Main results:

- 1) Math: Classification of CS infinite distance limits of elliptic K3 Refinement of Kulikov degenerations
 - Type II: Type II.a and II.b [Clingher, Morgan'03] [Baily-Borel] [Mumford]
 - Type III: Type III.a and Type III.b [Lee,TW'21] cf.[Alexeev,Brunyante,Engel'20]
- 2) Physics: Characterisation of infinite distance limits for F-theory on K3
 - Type II.a: Decompactification limit 8d → 10d cf [Morrison, Vafa'96]
 Type II.b: Weak coupling/emergent string limit in 8d
 cf [Aspinwall, Morrison'97]
 - Type III.a: Decompactification limit 8d \rightarrow 9d Type III.b: Decompactification limit 8d \rightarrow 10d
- \implies Agreement with Emergent String Conjecture

F-theory on K3

finite enhancements \longleftrightarrow Kodaira-Néron classification

Branes	Algebra	Kodaira-type	$\operatorname{ord}(f)$	$\operatorname{ord}(g)$	$\operatorname{ord}(\Delta)$
A^{n+1}	A_n	I_{n+1}	0	0	n+1
$A^n BC$	D_n	I_{n-4}^*	2	3	n+2
A^5BC^2	E_6	IV^*	≥ 3	4	8
$A^6 B C^2$	E_7	 *	3	≥ 5	9
$A^7 B C^2$	E_8	*	\geq 4	5	10
	non-min	≥ 4	≥ 6	≥ 12	

Semi-Stable Degenerations

Consider 1-parameter family of K3 surfaces

- $X_u \qquad u \in D = \{u \in \mathbb{C}, |u| < 1\},$
 - $X_{u\neq 0}$ smooth K3
 - X₀ is degenerate

 \implies 3-fold \mathcal{X} fibered over D with smooth fiber $X_{u\neq 0}$ and degenerate central fiber X_0

Semi-stable reduction theorem: [Mumford]

Every such degeneration can be brought into semi-stable form.

• Semi-stable:

 $X_0 = \bigcup_i X^i$ with surface components X^i appearing with multiplicity one (reduced) and all singularities of X_0 are of local normal crossing type

This may require birational transformations on X (leaving X_{u≠0} invariant) or a base change u → uⁿ, n ∈ Z.

Semi-Stable Degenerations

Consider 1-parameter family of K3 surfaces

- $X_u \qquad u \in D = \{u \in \mathbb{C}, |u| < 1\},$
 - $X_{u\neq 0}$ smooth K3
 - X₀ is degenerate

 \implies 3-fold \mathcal{X} fibered over D with smooth fiber $X_{u\neq 0}$ and degenerate central fiber X_0

Semi-stable reduction theorem: [Mumford]

Every such degeneration can be brought into semi-stable form.

Theorem: [Kulikov'77] [Persson,Pinkham'81]

Up to birational transformations and base-change, a semi-stable K3 degeneration \mathcal{X} can be arranged to have trivial canonical bundle. \implies Kulikov models

Kulikov models

Theorem [Kulikov'77] [Persson'77] [Friedman,Morrison'81] Kulikov models admit a classification as models of Type I, Type II, Type III.

Kulikov Type I: X_0 is single smooth reduced surface. This occurs at finite distance in complex structure moduli space.

Infinite distance degenerations:

Kulikov Type II: degenerate K3 $X_0 = V_0 \cup V_1 \cup \ldots \cup V_n$

- V_0 , V_n : rational surfaces
- V_1, \ldots, V_{n-1} : elliptic ruled surface
- $V_i \cap V_{i+1}$: elliptic curve

Kulikov Type III: degenerate $X_0 = \cup_i V_i$

- Each is V_i a rational surface
- $V_i \cap V_j$ is a rational curve or empty

Kulikov models

Kulikov Type II: degenerate K3 $X_0 = V_0 \cup V_1 \cup \ldots \cup V_n$

- $V_i \cap V_{i+1}$: elliptic curve
- 2 transcendental 2-tori $\gamma_j \in H_2(X_0, \mathbb{Z})$: $\int_{\gamma_j} \Omega = 0, \qquad j = 1, 2$

Kulikov Type III: degenerate $X_0 = \cup_i V_i$

- $V_i \cap V_j$ is a rational curve or empty
- 1 transcendental 2-torus $\gamma_1 \in H_2(X_0, \mathbb{Z})$: $\int_{\gamma_1} \Omega = 0$

M-theory on X_u in limit $u \to 0$:

• Obtain 2 or 1 towers of asymptotically massless BPS particles from M2-branes wrapped *n*-times on γ_j for $n \in \mathbb{Z}$.

Similar arguments on CY3 and CY4: [Grimm,Palti,Valenzuela'18] [Grimm,Li,Palti'18] [Grimm,Li,Valenzuela'19] ...

• These in general form a *subset* of the asymptotically massless states. More details on degeneration required to extract asymptotic physics.

Type II Kulikov models

Theorem: [Clingher, Morgan'03] [Baily-Borel] [Mumford] For elliptically fibered K3, the Type II degenerations are (birationally) of the form

 $X_0 = X^1 \cup X^2$, $X^1 \cap X^2 = E$ E: elliptic curve

• Type II.a: X^1 and X^2 are both dP₉ surfaces cf. [Morrison,Vafa'96]

• Type II.b: X^1 , X^2 are \mathbb{P}^1 -fibrations over $\mathbb{P}^1_{\mathrm{b}}$ cf. [Aspinwall,Morrison'96]

Kulikov Type II.a models

'Stable degeneration limit' of F-theory - heterotic duality cf. [Morrison, Vafa'96]

$$\gamma_1 = S_A imes \Sigma$$
, $\gamma_2 = S_B imes \Sigma$

Particle towers in M-theory: δ_i : M2-brane on γ_i i = 1, 2

F-theory: δ_1 : (1,0) string on Σ δ_2 : (0,1) string on Σ

 \implies encircling configuration of 12 branes of total monodromy

$$\prod_{i=1}^{12} M_{[p_i,q_i]} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = M_{I_0}^{-1} = M_{\hat{E}_9} \qquad \hat{E}_9 = A(A^7 B C^2) X_{[3,1]}$$

Hallmark: Component with I_0 fiber intersecting component in I_0 fiber Physics: 8d \rightarrow 10d decompactification limit of dual heterotic theory on $T_{\text{het}}^2 = S_{\text{het},1}^1 \times S_{\text{het},2}^1$ δ_i : KK tower associated with $S_{\text{het},1}^1$ i = 1, 2

Kulikov Type II.b models

Realises limits of form [Aspinwall, Morrison'96]

 $X^1 \cap X^2 = E = \sigma_1 \times \sigma_2$: bisection (double cover of \mathbb{P}^1_b) In generic fiber over \mathbb{P}^1_b : S^1_A is vanishing 1-cycle (I_2 degeneration)

 \implies 2 vanishing 2-tori $\gamma_i = S^1_A \times \sigma_i$, i = 1, 2

Asymptotically massless particle towers in M-theory:

1. BPS particles from M2-branes on γ_i , i = 1, 2

$$\frac{M_{\mathrm{w},i}}{M_{11}} \sim \mathcal{V}_{11}(S_A) \times \mathcal{V}_{11}(\sigma_i) \sim \mathcal{V}_{11}(\gamma_i) \to 0$$

2. Tower of excitations of (non-BPS) tensionless string from M2 on S_A^1 :

$$\frac{M_{\rm str}^2}{M_{11}^2} \sim \mathcal{V}_{11}(S_A) \to 0$$

Ringberg - 08/11/2021 - p.14

Kulikov Type II.b models

F-theory interpretation:

Realised in Sen limit to weakly coupled Type IIB orientifold on E [Aspinwall,Morrison'96] [Donagi,Wijnholt '12]

Asymptotically tensionless weakly coupled (1,0) string with tower of winding states parametrically at same scale:

 $M_{\mathrm{w},i} \sim M_{\mathrm{str}}^2 \operatorname{Vol}(\sigma_i) \sim M_{\mathrm{str}} \mathcal{V}_{\mathrm{IIB}}(\sigma_i)$

 \implies Effective 8d theory rather than decompactification

Summary so far

Classification as Type II Kulikov not sufficient to distinguish between

- Decompactification limits $8d \rightarrow 10d$: Realisation of \hat{E}_9 loop algebra
- Emergent string limit in 8d: Realisation of Type IIB orientifold/Sen limit

Kulikov Type II/III - Systematics

Degenerate K3 X_0 has structure of fibration over B_0

Blow down all exceptional fibers \implies degenerate Weierstrass model

- $\pi: Y_0 = \bigcup_{i=0}^P Y^i \longrightarrow B_0 = \bigcup_{i=0}^P B^i$ $y^2 = x^3 + fxz^4 + gz^6$
- f: degree 8 on B_0
- g: degree 12 on B_0

$$\Delta = 4f^3 + 27g^2$$
: degree 24

• If write
$$B^i = \{e_i = 0\}$$
, then
 $f = \prod_{i=0}^{P} e_i^{a_i} \tilde{f}, \quad g = \prod_{i=0}^{P} e_i^{b_i} \tilde{g}, \quad \Delta = \prod_{i=0}^{P} e_i^{n_i} \tilde{\Delta}$

$$\bigcirc I_{n_i=0} \qquad \bigcirc I_{n_i>0}$$

 $n_i = 0$: $Y^i =$ elliptic fibration over B^i $n_i > 0$:

degenerate fiber over generic point of base component B^i

Systematics

Observation 1: [Lee, TW'21]

Fiber over generic point must be of Kodaira Type I_{n_i} for $n_i \ge 0$

i.e. $a_i \ge 0, b_i = 0$ or $a_i = 0, b_i \ge 0$

Reason: All others lead to not normal crossing or higher multiplicities not semi-stable

Further degenerations over special points on B^i (codimension-one fibers):

- from intersection of 2 components
- in the interior of B^i : physical 7-branes in the theory

Read off from vanishing orders of $f_i = f|_{e_i}, \quad g_i = g|_{e_i}, \quad \tilde{\Delta}_i = \tilde{\Delta}|_{e_i}$ at special points: $\operatorname{ord}_{\mathrm{K3}}(f, g, \Delta)|_{\mathcal{P} \in B^i} = (\operatorname{ord}(f_i), \operatorname{ord}(g_i), \operatorname{ord}(\tilde{\Delta}_i))|_{\mathcal{P}}$

Systematics

Observation 2:

- 1. On a component with I_0 -fibers: general Kodaira fibers are possible
- 2. On a component with generic $I_{n_i>0}$, the codimension-one fibers can only be of

 $\begin{array}{lll} D\text{-type:} & \operatorname{ord}_{\mathrm{K3}}(f,g,\Delta)|_{\mathcal{P}\in B^{i}}=(2,3,2+k)\leftrightarrow\mathsf{O7\text{-planes}}\\ A\text{-type:} & \operatorname{ord}_{\mathrm{K3}}(f,g,\Delta)|_{\mathcal{P}\in B^{i}}=(0,0,k)\leftrightarrow\mathsf{perturbative 7\text{-branes}} \end{array}$

If the $I_{n_i>0}$ -component is

- an end component, then precisely 2 *D*-type singularities
- a middle component, then no D-type singularities

Reason: An $I_{n_i>0}$ component requires

$$f_i = -3h_i^2$$
, $g_i = 2h_i^3$ for $h_i \in H^0(B^i, L_i^2)$.

Explicit analysis of discriminant shows claim

Elliptic Type III - Classification

Theorem: [Lee,TW'21] see also: [Alexeev,Brunyante,Engel'20] Every Type III Kulikov model must have a Weierstrass model with central element Y_0 degenerating as a chain $Y_0 = \bigcup_{i=0}^P Y^i$ with $P \ge 1$:

1. Type III.a degenerations:

2. Type III.b degenerations:

Physics of Type III.a

Type III.a:

One or both ends are dP₉ surfaces intersecting $I_{n>0}$ component \Longrightarrow decompactification to 9d

 $Y_0 = \bigcup_{i=0}^P Y^i$

- Y^P : I_0 fiber over B^P (dP₉ surface)
- Y^{P-1} : $I_{n>0}$ fiber over B^{P-1}
- $B_P \cap B_{P-1} = 1$ point

 $\gamma_1 = S^1_A \times \Sigma \iff$ affine node δ_1 within \hat{E}_{9-n}

Physics: Partial decompactification of dual heterotic theory on $S^1_{\text{het.1}} \times S^1_{\text{het.2}}$: 8d \longrightarrow 9d

Digression: Affine Enhancements

 $\begin{pmatrix} p \\ q \end{pmatrix} \text{ strings end on } [p,q]\text{-7-branes with } SL(2,\mathbb{Z}) \text{ monodromy}$ $\begin{pmatrix} r \\ s \end{pmatrix} \rightarrow M_{[p,q]} \begin{pmatrix} r \\ s \end{pmatrix}$ $M_{[p,q]} = \begin{pmatrix} 1+pq & -p^2 \\ q^2 & 1-pq \end{pmatrix}$

ADE Lie algebras by collision of $\left[p,q\right]\mbox{-branes}$ of type

	G	branes	Monodromy M_G	
$A = X_{[1,0]}$ $B = X_{[1,-1]}$	A_N	A^{N+1}	$\begin{pmatrix} 1 & -N-1 \\ 0 & 1 \end{pmatrix}$	
$C = X_{[1,1]}$ [Gaberdiel,Zwiebach'97]	D_N	$A^N BC$	$\begin{pmatrix} -1 & -N-4 \\ 0 & -1 \end{pmatrix}$	
[DeWolfe,Zwiebach'98]	E_N	$A^{N-1}BCC$	$\begin{pmatrix} -2 & 2N-9 \\ -1 & N-5 \end{pmatrix}$	

Digression: Affine Enhancements

Analysis of monodromies shows:

[DeWolfe, Hauer, Iqbal, Zwiebach'98]

Affine enhancement

$$\hat{E}_N = E_N X_{[3,1]} = (A^{N-1} BCC) X_{[3,1]}$$

•
$$M_{\hat{E}_N}\delta = \delta$$
, $\delta = \begin{pmatrix} -1\\ 0 \end{pmatrix}$

 $\implies \delta = \text{string encircling } \hat{E}_N \text{ gives}$ BPS state, massless for coincident E_N and $X_{[3,1]}$

• $\hat{E}_N^{\ a}$ is affine extension of finite Lie algebra E_N simple roots: $\{\alpha_i\}_{E_N}$, δ : imaginary root $\delta \cdot \delta = 0$, $\delta \cdot \alpha_i = 0$

^{*a*} E_8 has two equivalent enhancements: 1) $E_8 \rightarrow \hat{E}_8 = E_8 X_{[3,1]}$ 2) $E_8 \rightarrow E_9 = A E_8$

Physics of Type III.a

Symmetry algebra (non-abelian part):

$$G_{\infty} = H \oplus (\hat{E}_{n_0} \oplus \hat{E}_{n_P})/\sim$$
 for 2 dP_9 ends

Interpretation: Non-abelian gauge algebra in 9d:

$$G_{9d} = H \oplus E_{n_0} \oplus E_{n_P}$$

$$\hat{E}_{8}, \quad \hat{E}_{7}, \quad \hat{E}_{6}, \quad \hat{E}_{5} = \hat{D}_{5},$$

 $\hat{E}_{4} = \hat{A}_{4}, \quad \hat{E}_{3} = A_{2} \oplus A_{1}, \quad \hat{E}_{2} = A_{1} \oplus u(1), \quad \hat{E}_{1} = \hat{A}_{1}, \quad \hat{\tilde{E}}_{0} = \hat{\emptyset}.$

Application: Classification of maximal non-abelian gauge algebras in 9d

2 dP₉ ends: $G_{\infty}^{\max} = A_{17-n-m} \oplus (\hat{E}_n \oplus \hat{E}_m) / \sim \implies G_{9d}^{\max} = A_{17-n-m} \oplus (E_n \oplus E_m),$ $n, m \in \{0, 1, 3, \dots, 8\}$

 $1 \text{ dP}_9 \text{ end}$:

 $G_{\infty}^{\max} = D_{17-k} \oplus \hat{E}_k \implies G_{9d}^{\max} = D_{17-k} \oplus E_k, \qquad k \in \{0, 1, 3, \dots, 8\}$

Reproduces results of [Cachazo,Vafa'00] [Font,Fraiman,Grana,Nunez,Freitas'20]

Ringberg - 08/11/2021 - p.23

Physics of Type III.b

Only $I_{n>0}$ fibers:

Weak coupling limit + large complex structure limit of torus $T_{
m IIB}^2$ to 10d

- same (1,0) cycle S_A in fiber degenerates over all components Bⁱ
 ⇒ M2 on S_A: asymptotically tensionless fundamental IIB string
 ⇒ globally weak coupling limit
- In addition to weak coupling limit, 2 or more O-planes collide Vanishing orders: (2,3,*) → (4,6,*) ⇒ blowup

 \implies Degenerating complex structure of T_{IIB}^2

Massless towers:

- (1,0) string around intersection points: winding tower
- From above picture we know there must in addition be a SUGRA KK tower which we cannot see in this simple manner
- \implies Decompactification to weakly coupled Type IIB in 10d

Realisation via non-minimal fibers

Theorem [Lee, TW'21]

All Type III Kulikov models are blowups of Weierstrass models with suitable non-minimal singularities:

- Start with Weierstrass over base $\mathbb{P}^1_{[s:t]}$ $y^2 = x^3 + f_u(s,t)xz^4 + g_u(s,t)z^6$
- Consider non-minimal Kodaira singularity at s = 0 in the limit $u \to 0$: $\operatorname{ord}(f, g, \Delta)|_{u=0,s=0} = (4 + \alpha, 6 + \beta, 12 + \gamma)$

Then possibly upon base change, a chain of blowups in the base leads to a family of Weierstrass models without non-minimal singularities

- If $\gamma = 0$ (and hence $\alpha = 0$ or $\beta = 0$ or both): Blowup gives Type II model birational to Type II.a
- If γ > 0 and α = 0 = β:
 blowup gives Type III.a (generically) or III.b model (non-generically)
- If $\gamma > 0$ and $\alpha > 0$ and $\beta > 0$: Type I (finite distance)

Ringberg - 08/11/2021 - p.25

$E_7 \times E_8$ Weierstrass model

$$f = t^3 s^4 (a t + c s), \qquad g = t^5 s^5 (d s^2 + b s t + e t^2)$$

- on base $\mathbb{P}^1_{[s:t]}$: $E_7|_{t=0} \times E_8|_{s=0}$
- $\operatorname{ord}(f, g, \Delta)|_{t=0} \ge (4, 6, 12)$ for $c \to 0$, $d \to 0$

 $4a^3 + 27b^2 \sim u^k$, $c \sim u^n$, $d \sim u^m$ $u \to 0$

- k = 0: Type II limit: $\hat{E}_9 \times \hat{E}_9$ Full decompactification to 10d with non-ab. gauge group $E_8 \times E_8$
- $k \ge 1$: Type III limit:

decompactification to 9d, with variety of further enhancements

	Loop algebra	non-ab part in 9d
	$\hat{E}_7 imes \hat{E}_8$	$E_7 \times E_8$
towers from \hat{G}_1 and \hat{G}_2	$\hat{E}_7 \times \hat{E}_8 \times SU(2)$	$E_7 \times E_8 \times SU(2)$
are equivalent and identified	$\hat{E}_7 \times \hat{E}_8 \times SU(3)$	$E_7 \times E_8 \times SU(3)$
	$\hat{E}_8 imes \hat{E}_8$	$E_8 \times E_8$
	$\hat{E}_8 \times \hat{E}_8 \times SU(2)$	$E_8 \times E_8 \times SU(2)$
		Ringberg - 08/11/2021 - p.26

L

$$E_7 \times E_8$$
 Weierstrass model

$$f_8 = t^3 s^4 (a t + c s), \qquad g_{12} = t^5 s^5 (d s^2 + b s t + e t^2)$$

- Y^0 and Y^4 are dP₉, Y^1 , Y^2 , $Y^3 \simeq T^2 \times \mathbb{P}^1$, $Y^i \cap Y^{i+1} = T^2$
- Y^0 and Y^4 contain those branes which coalesce in inf. distance limit $\implies \hat{E}_9 \times \hat{E}_9$
- Each \hat{E}_9 gives two towers, and towers from Y^0 and Y^4 are isomorphic \implies decompactification 8d \rightarrow 10d
 Ringberg - 08/11/2021 - p.27

$E_7 \times E_8$ Weierstrass model

Example: $4a^3 + 27b^2 \sim u^k$, $c \sim u^4$, $d \sim u^4$

k = 1, otherwise generic: Kulikov Type III

- Y^0 , Y^4 : dP₉, Y^1, Y^2, Y^3 : rational fibration over \mathbb{P}^1 , $Y^i \cap Y^{i+1} = \mathbb{P}^1$
- From Y^0 , Y^4 : $\hat{E}_{7/8} \times \hat{E}_8$ in infinite distance limit
- Interpretation:
 - 1 BPS tower from each \hat{E}_n , both identified

 \implies decompactification $8d \rightarrow 9d$ with $G_{non-ab}^{9d} = E_7 \times E_8$

 $E_7 \times E_8$ Weierstrass model

Type III degeneration $4a^3 + 27b^2 \sim u$ Specialisation $c = -i\frac{\sqrt{3}}{\sqrt{a}}d$ $E_7 \times E_8 \times SU(2)$ in 9d $4a^3 + 27b^2 \sim u^2$

Specialisation
$$c=-irac{\sqrt{3}}{\sqrt{a}}d$$
 $E_7 imes E_8$ in 9d

 $\begin{array}{l} 4a^3+27b^2\sim u^3\\ \text{Specialisation }c=-i\frac{\sqrt{3}}{\sqrt{a}}d\\ +\ 1 \ \text{more tuning}\\ \text{Type III degeneration}\\ E_7\times E_8\times SU(3) \ \text{in 9d} \end{array}$

Heterotic dual

Match with dual heterotic on T^2 cf. [Malmendier, Morrison'14] [Jockers, Gu'15] [Klemm, Poretschkin, Schimannek, Raum'15] Map to Siegel modular forms [Font, Garcia-E., Lüst, Massai, Mayrhofer'16]

$$\begin{split} a &= -\frac{\psi_4(\underline{\tau})}{48} \,, \quad b = -\frac{\psi_6(\underline{\tau})}{864} \,, \quad c = -4\chi_{10}(\underline{\tau}) \,, \quad d = \chi_{12}(\underline{\tau}) \,, \quad e = 1 \\ \underline{\tau} &= \begin{pmatrix} \tau & z \\ z & \rho \end{pmatrix} \, \underline{\tau}: \, \text{compl. struct.} \qquad \rho: \, \text{K\"ahler mod.} \,, \quad z: \, \text{Wilson line} \\ c &\sim \chi_{10} \sim q_\tau q_\rho (-2 + \xi + \frac{1}{\xi}) + \ldots \sim u^4 \quad \to 0 \\ d &\sim \chi_{12} \sim q_\tau q_\rho (10 + \xi + \frac{1}{\xi}) + \ldots \sim u^4 \quad \to 0 \\ 4a^3 + 27b^2 \sim (\psi_4^3 - \psi_6^2) \sim q_\tau + q_\rho + \ldots \sim u^k \\ q_\tau &= e^{2\pi i \tau} \,, \qquad q_\rho = e^{2\pi i \rho} \,, \qquad \xi = e^{2\pi i z} \end{split}$$

 $\begin{aligned} k &= 0 \text{ (Type II): } \rho \to i\infty, \ \tau \text{ finite: } \longrightarrow 10 \text{ limit } \checkmark \\ k &> 0 \text{ (Type III): } \rho \to i\infty, \ \tau \to i\infty, \ \tau / \rho = \mathcal{O}(1): \longrightarrow 9 \text{ limit } \checkmark \end{aligned}$

Conclusions

Mathematics and physics of CS infinite distance limits for K3 surfaces Refinement of Kulikov classification in agreement with physics:

✓ In agreement with idea of Emergent String Conjecture

✓ Reproduces classification of maximal 9d non-ab. gauge symmetries
 [Cachazo,Vafa'00] [Font,Fraiman,Grana,Nunez,Freitas'20]

Next steps: Extension of this reasoning to CY_3 and CY_4