

SM Compatibility of $B \to K^{(*)}\pi$ Measurements and Analysis on $B^+ \to K^*(892)^+[K_S^0\pi^+]\pi^0$ in Belle II

Oskar Tittel IMPRS recruiting workshop 15.11.2021

The Belle II experiment

Experiment on the intensity frontier of the search for new physics (NP)

 $e^+ - e^-$ collisions at $\sqrt{s} = m(\Upsilon(4S)) = 10.58 \text{ GeV}$

 $\Upsilon(4S)$ decays into B-meson pair \rightarrow B factory

Goal:

Perform most precise measurements of Standard Model (SM) parameters

- 30 x Belle peak luminosity ($\mathcal{L} = 6 \times 10^{35} cm^{-2} s^{-1}$)
- 50 x Belle integrated luminosity ($\mathcal{L}_{int} = 50ab^{-1}$)

Hadronic Charmless B-Decays

→Potentially find new physics(NP) in loop contributions

My work on the $B \rightarrow K^{(*)}\pi$ system:

• Investigate amplitudes of $B \to K^{(*)}\pi$ decays $(B^+ \to K^0\pi^+, B^+ \to K^+\pi^0, B^0 \to K^+\pi^-, B^0 \to K^0\pi^0)$

 \rightarrow Extract parameter values, visualize the results and identify important measurements

• Perform analysis on $B^+ \rightarrow K^*(892)^+[K_S^0\pi^+]\pi^0$

MAX-PLANCE

Neglect annihilation, exchange and penguin-annihilation diagrams

1. Order:
$$|P'_{tc}|$$
 2. Order: $|T'|$, $|P'_{EW}|$ 3. Order: $|C'|$, $|P'_{uc}|$, $|P'_{EW}|$

Amplitudes of $B \rightarrow K\pi$ Decays

$$A^{0+} = -P'_{tc} + P'_{uc}e^{i\gamma} - \frac{1}{3}P'^{C}_{EW}$$

$$\sqrt{2}A^{+0} = -T'e^{i\gamma} - C'e^{i\gamma} + P'_{tc} - P'_{uc}e^{i\gamma} - P'_{EW} - \frac{2}{3}P'^{C}_{EW}$$

$$A^{+-} = -T'e^{i\gamma} + P'_{tc} - P'_{uc}e^{i\gamma} - \frac{2}{3}P_{EW}^{'C}$$

$$\sqrt{2}A^{00} = -C'e^{i\gamma} - P'_{tc} + P'_{uc}e^{i\gamma} - P'_{EW} - \frac{1}{3}P_{EW}^{'C}$$

Isospin sum rule:
$$\sqrt{2}A^{00} + A^{-+} = \sqrt{2}A^{0+} + A^{+0}$$

[1]: Nicolas Boisvert Beaudry et al. The B $\rightarrow \pi K$ Puzzle Revisited. 2018. arXiv: 1709.07142 [hep-ph]

Fitting to the Measured Values

Fit the theory parameters to the existing data using a least squares method:

$$BR = \frac{\tau p}{8\pi m_B^2} |A|^2 \qquad A_{CP} = \frac{BR(B^- \to \bar{f}) - BR(B^+ \to f)}{BR(B^- \to \bar{f}) + BR(B^+ \to f)} \qquad S_{CP} = \sin(2\beta) \sqrt{1 - A_{CP}^2}$$

Used Data for $B \rightarrow K\pi$ [1], [2]:

	BR	A _{CP}	S _{CP}
$B^+ \to K^0 \pi^+$	23,8±0,4	-0,020±0,034	
$B^+ \to K^+ \pi^0$	12,9±0,2	0,037±0,021	
$B^0 \to K^+ \pi^-$	19,6±0.5	-0,083±0,004	
$B^0 \to K^0 \pi^0$	9,93±0,49	-0,08±0,14	0,58±0,17

[2]: Particle Data Group et al. "Review of Particle Physics".
In: Progress of Theoretical and Experimental Physics
2020.8 (Aug. 2020). 083C01. issn: 2050-3911. doi: 10.
1093/ptep/ptaa104. eprint:
https://academic.oup.com/ptep/article-pdf/
2020/8/083C01/34673722/ptaa104.pdf. url:
https://doi.org/10.1093/ptep/ ptaa104.

[3]: Will Parker. "Direct CP violation in the decay B+ to K+ pi0 at LHCb. Direct CP violation in the decay B+ to K+ pi0 at LHCb". In: (Dec. 2020). url: https: //cds.cern.ch/record/2746303.

Define strong phase $\delta_{T'}$ as 0, so $T' = T'_0$, while $C' = C'_0 e^{i\delta} c'$ etc.

Use relation $P'_{EW} = \frac{3c_9}{2c_1}RT'[1]$,

where c_i are Wilson coefficients

and $R \equiv |(V_{th}^* V_{ts})/(V_{uh}^* V_{us})|$

$$A^{0+} = -P'_{tc}$$

$$\sqrt{2}A^{+0} = -T'e^{i\gamma} + P'_{tc} - \frac{3}{2}\frac{c_9}{c_1}RT'$$

$$A^{+-} = -T'e^{i\gamma} + P'_{tc}$$

 $\sqrt{2}A^{00} = -P'_{tc} - \frac{3}{2}\frac{c_9}{c_1}RT'$

[1]: Nicolas Boisvert Beaudry et al. The B $\rightarrow \pi K$ Puzzle Revisited. 2018. arXiv: 1709.07142 [hep-ph]

Fit up to second Order for $B \rightarrow K\pi$

P' [eV]	$\delta_{P'}[^{\circ}]$	T' [eV]	$\gamma[^{\circ}]$	R	$\frac{\chi^2}{d.o.f.}$	p-value
53.1 ± 0.5	-12.5 ± 0.7	9.1 ± 0.5	61 ± 3	49 ± 1	66.9/6	< 0.0001

Goodness of fit indicates large discrepancies between model and data →several regions of partial agreement

The weak phase is considerably below the measured value of $\gamma = (71.1 \pm 5.3)^{\circ}$

Measurement of $A_{CP}(K^+\pi^-)$ dominates the result, while $A_{CP}(K^+\pi^0)$ can not be explained ($K\pi$ -puzzle)

Introduce
$$|C'| = \frac{|T'|}{3}$$
 for $B \to K\pi$

P' [eV]	$\delta_{P'}[^{\circ}]$	T' [eV]	$\delta_{C'}[^{\circ}]$	$\gamma[^{\circ}]$	4
53.5 ± 0.5	-9.3 ± 0.5	13.0 ± 0.6	-47 ± 6	64 ± 3	3
$\beta[^{\circ}]$	R	$\frac{\chi^2}{d.o.f.}$	p-value		
22.2 ± 0.7	49 ± 1	5.9/5	0.3161		3

The fit quality improved reasonably, including the estimate for γ

 $BR(K^0\pi^0)$ shows the largest discrepancy to the fit result, while imposing possibly the strongest constraint on |T'| \rightarrow Key measurement

MAX-PLANCK-IN

FÜR PHYS

Analysis on $B^+ \rightarrow K^* (892)^+ [K_S^0 \pi^+] \pi^0$

1. Reconstruction

combine candidates in kinematic fits to fill list of B-meson candidates

2. Selection

loose baseline selection followed by optimized continuum suppression and particle identification cuts

3. Modelling

use simulated data (MC) to model relevant features and determine selection efficiencies for BR calculations

- 4. Fit to data & calculate physics quantities
- 5. Assess systematic uncertainties

 $\checkmark M_{bc} = \sqrt{E_{beam}^2 - p_B^2}$

 $\Delta E = E_{reco} - E_{beam}$

Current Status

Current fits reproduce signal but have problems to distinguish between continuum and BB background

Attempts to fit designated $B\overline{B}$ individually failed to improve the result so far

In addition, the calculated direct CP Asymmetry is -0.049 ± 0.109 with a MC truth value of $-0.021 \rightarrow$ no meaningful result yet

→The modelling and resulting fits need improvements

Oskar Tittel

More precise measurements can improve the parameter estimation and resolve or strengthen tensions

The analysis on $B^+ \rightarrow K^*(892)^+[K_S^0\pi^+]\pi^0$ must still be improved and extended

 \rightarrow 4 possible $K^*\pi$ channels

Data: $0.063ab^{-1}$ analyzed, $0.213ab^{-1}$ on tape $\rightarrow 0.8 - 1ab^{-1}$ expected until end of 2022