

Search for the Lepton Flavor Violating Decay $\tau \rightarrow \mu \pi^0$ at Belle II

Marton Nemeth-Csoka

IMPRS Workshop 15/16.11.21

- Asymmetric e^+e^- collider at $\Upsilon(4S)$ -resonance (10,6 GeV)
- "B-factory" $\rightarrow B\overline{B}$ -pairs
- Ideal environment for τ -Pair-Production
 - \rightarrow Also τ -factory!

https://belle2.desy.de/ https://www.cityofirvine.org/multicultural-and-international-affairs/tsukuba-japan Marton Nemeth-Csoka

16 11 21

- LFV-decay already at tree-level
- All final state particles are measurable
- 2-body decay \rightarrow in tau rest system Pion and Muon have same total momentum
- tau rest system can be estimated directly from decay products (no neutrino)

Integrated Luminosity

Belle	Belle II (9.11.2021)
901 fb⁻¹	216.71 fb⁻¹

Results of Belle:

Mode	Eff. (%)	N_{BG}^{\exp}	UL (10 ⁻⁸)
$\mu\eta(\to\gamma\gamma)$	8.2	0.63 ± 0.37	3.6
$\mu\eta(\rightarrow\pi\pi\pi^0)$	6.9	0.23 ± 0.23	8.6
$\mu\eta$ (comb.)			2.3
$\mu\eta'(\rightarrow\pi\pi\eta)$	8.1	$0.00\substack{+0.16\\-0.00}$	10.0
$\mu \eta' (\rightarrow \gamma \rho^0)$	6.2	0.59 ± 0.41	6.6
$\mu \eta'$ (comb.)			3.8
$\mu\pi^0$	4.2	0.64 ± 0.32	2.7

Reconstructing Strategy: MC events

- Blind analysis
- Reconstruct $\tau \rightarrow \mu[\pi^0 \rightarrow \gamma \gamma]$
- 1-1 topology: events with two charged tracks only
- \rightarrow No direct reconstruction of tau on tag-side
- → Combine all particles not used for signal and build RestOfEvent ("ROE")
- \rightarrow No losses caused by requiring specific tag-decay channels

Monte Carlo Analysis Samples

Signal sample:

- 1 million simulated events
- $\tau_{sig} \rightarrow \mu[\pi^0 \rightarrow \gamma\gamma]$
- $\tau_{tag} \rightarrow$ according to SM

All samples with simulated beam-background and detector effects

Background samples:

Event type	Event name	luminosity equivalent
$e^+e^- \rightarrow q\overline{q} \ (q=udsc)$	ʻqqbar'	100 fb ⁻¹
$e^+e^- \rightarrow \tau^+\tau^-$ (SM)	'taupair'	100 fb ⁻¹
$e^+e^- \rightarrow B\overline{B}$	'BBbar'	100 fb ⁻¹
$e^+e^- \rightarrow e^+e^-\gamma$	'ee'	10 fb ⁻¹
$e^+e^- \rightarrow \mu^+\mu^-\gamma$	'mumu'	100 fb ⁻¹
$e^+e^- \rightarrow e^+e^-\mu^+\mu^-$	'eemumu'	100 fb ⁻¹
$e^+e^- \rightarrow e^+e^-e^+e^-$	'eeee'	10 fb ⁻¹

FÜR PHYSIK

MAX-PLANCK-INSTITUT

Preselection

Track-Cuts:• N(tracks) = 2• vertex near interaction point:-1.0 cm < dz < 1.0 cmdr < 1.0 cm	loose Cuts for π^0 -photons:• E > 0.1 GeV• 17° < θ < 150°• N(clusterHits) in calorimeter > 1.5	<u>Pi0:</u> 0.115 GeV < invM < 0.152 GeV	 <u>HemisphereCut with</u> <u>thrust-axis:</u> μ and π⁰ from same hemisphere τ_{sig} and ROE from opposite hemisphere
			opposite hemisphere

 \rightarrow Reduce misreconstruction with beam-background photons

 \rightarrow 1-1 Topology

Events generated	Events reconstructed	Events after preselection	
1 000 000	631650	341078	

- Current trigger: CDC requires 2 full tracks
- polar acceptance only $31^{\circ} < \theta < 126^{\circ}$

 Imax-planck-institut
 Signal Region - Two Body Decay

 1.0
 ×10⁵

 1.0
 ×10⁵

qq

2671

20181648

- Cut around signal in trapezoid shape
- \rightarrow 68% of signal inside cut

signal

341078

229898

1660

no cuts 2D cut

1

246

102

17

- Ensures the signal's charged track to be a muon
- muID: Belle II variable combining information from all sub-detectors
- Identity hypothesis for each particle between 0 and 1

	signal	qar q	$ au^+ au^-$	$B\bar{B}$	$e^+e^-\gamma$	$\mu^+\mu^-\gamma$	$e^+e^-\mu^+\mu^-$	$e^+e^-e^+e^-$
no cuts	341078	20181648	34106885	301277	8034214	659828	11349268	13925376
2D cut	229898	2671	246	1	11328	1660	17	102
muID >0.50	218758	218	32	0	16	1579	4	2
muID > 0.90	208222	119	26	0	2	1547	4	0
muID > 0.95	206202	109	25	0	1	1537	4	0
muID >0.99	201679	97	22	0	0	1506	4	0

\rightarrow moderate muID > 0.90 for further cuts

$$E_{\rm vis} = \sum E_{\rm reconstructed}$$
 in CMS-frame

- creates neutrino τ_{tag} \rightarrow missing energy
- μμ-events have no neutrino

$$E_{vis} < 10 \text{ GeV}$$

MAX-PLANCK-INSTITUT

FÜR PHYSIK

signal: 208222→ 179867

Marton Nemeth-Csoka

Belle II

175

12/14

 \rightarrow missing momentum pointing to shallow polar angles

undetected initial state radiation in beam-direction

Missing neutrino from signal

MAX-PLANCK-INSTITUT

EÜR PHYSIK

 $\vec{p}_{\text{miss}} = \vec{p}_{e^+e^-} - \sum \vec{p}_{\text{rec}}$ in labframe

Cut on polar angle of missing momentum

30

Signal (1mil) and background ($L_{int} = 100 \, \text{fb}^{-1}$)

75

50

100

Polar angle of missing momentum [deg]

125

150

signal: $179867 \rightarrow 168372$

5000

4000 (bəp

3000 -

2000

1000

candidates

Signal

Signal +μ

 $\tau^+ \tau^-$

25

0

p mu in Tau rest [GeV]

p mu in Tau_rest [GeV]

IMPRS Workshop

Future Prospects and Steps

Neural trigger at Belle II from 2021:

- \rightarrow Only requires one charged track
- \rightarrow Improved reconstruction rate

Next steps:

- Check cut-performance for 500 fb⁻¹ MC
- Introduce additional cuts
- Improve cut strategy
- Get analysis approval of τ working group at Belle II

 \rightarrow Extend analysis to $e\pi^{0}$, $\ell\eta$, $\ell\eta'$

 $[\]rightarrow$ Look at real data

Backup

Preselection Study

Marton Nemeth-Csoka

Belle II

- Opening angle constrained by 2-body kinematics
- BG reduction with small signal loss

$$0.5 < \cos\theta \; (\mu \pi^0) < 0.8$$

signal: $168372 \rightarrow 156615$

	signal	qar q	$ au^+ au^-$	$B\bar{B}$	$e^+e^-\gamma$	$\mu^+\mu^-\gamma$	$e^+e^-\mu^+\mu^-$	$e^+e^-e^+e^-$
no cuts	341078	20181648	34106885	301277	8034214	659828	11349268	13925376
2D cut	229898	2671	246	1	11328	1660	17	102
muID > 0.90	208222	119	26	0	2	1547	4	0
$E_{\rm visible}$	179867	30	20	0	0	231	3	0
$ heta_{ ext{missing } ec{p}}$	168372	26	19	0	0	7	0	0
$\measuredangle(\mu\pi^0)_{\rm CMS}$	156615	14	2	0	0	3	0	0
tight 2D cut	53489	0	0	0	0	0	0	0

Numbers and Data

- isSignal/Reconstructed: 53489/53503 = 99,97%
- Belle instantaneous luminosity goal: 6*10³⁵ cm⁻²s⁻¹

Results Belle	
Efficiency	4.2%
Expected BG at 901 fb ⁻¹	0.64±0.32

- muID Likelihood for particle hypthesis muonID = $\frac{\mathcal{L}_{\mu}}{\mathcal{L}_{e} + \mathcal{L}_{\mu} + \mathcal{L}_{K} + \mathcal{L}_{p} + \mathcal{L}_{d}}$
- Upper limit prediction: BR $< 5.8*10^{-7}$ (90% CL)

FÜR PHYSIK

Cuts at Belle and BaBar

BaBar	1	\mathbf{Belle}		
BaBar Cuts general Cuts signal side	• 2 or 4 charged tracks, total charge = 0 • Photon conversion tracks rejected • -0.76 < polar angle of missing momentum < 0.92 • 1 or 3 tracks and 2 photons • 50 MeV < E_{γ} < 100 MeV in signal hemisphere • 0.115 GeV/c ² < m($\pi^0 \rightarrow \gamma\gamma$) < 0.150 GeV/c ² • 1.5 GeV/c < p_{π^0}	Cuts general	$\label{eq:constraint} \begin{array}{ c c c c } \hline & \mbox{ all tracks in } -0.866 < \cos\theta < 0.956 \\ \hline & \mbox{ charged tracks } p_t > 0.1 {\rm GeV/c} \\ \hline & \mbox{ photon energies } E_{\gamma} > 0.1 {\rm GeV} \\ \hline & \mbox{ zero net charge of candidate tau-pairs} \\ \hline & \mbox{ charged lepton momentum } 0.115 {\rm GeV/c} < \vec{p_{f\pm}} < 0.152 {\rm GeV/c} \\ \hline & \mbox{ Visible energy: } 5.29 {\rm GeV} < E_{vis}^{CM} < 10.0 {\rm GeV} \\ \hline & \mbox{ muon-PID } > 0.9 {\rm with } p > 0.7 {\rm GeV/c} \\ \hline & \mbox{ reject radiative photons from electrons with } \cos\theta_{e\gamma} > 0.99 \end{array}$	
Cuts tag side	• track with $p > 0.5 \text{ GeV/c}$ and a identified as a muon by BaBar-PDD • total CM momentum on tag side $< 4.75 \text{ GeV/c}$ • total CM energy $\sum_{\alpha} E_{\gamma}^{CM} < 0.2 \text{ GeV/c}^2$		$ \begin{array}{l} \cdot \pi^{0} \text{-candidates } 1.5 \mathrm{GeV}/\mathrm{c}^{2} < M_{\gamma\gamma} < 4.5 \mathrm{GeV}/\mathrm{c}^{2} \\ \cdot p_{\pi^{0}} > 0.1 \mathrm{GeV}/\mathrm{c} \\ \cdot \pi^{0} \text{-candidate photons: } E_{\gamma 1} > 0.9 \mathrm{GeV} \text{ and } E_{\gamma 2} > 0.2 \mathrm{GeV} \\ \cdot \text{ extra photon candidates } n_{\gamma}^{SIG} \leq 1 \\ \cdot \text{ angle between } \mu \text{ and } \pi^{0} \text{: } 0.5 < \cos \theta_{\mu=\pi^{0}}^{CM} < 0.80 \end{array} $	
2D-cut parameters	$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$	Cuts tag side	• missing momentum $ \bar{p}_{miss} > 0.4 \text{ GeV}/\text{c}$ • angle to thrust and \bar{p}_{miss} : $\cos \theta_{miss-thrust}^{CM} < -0.55$ • extra photon candidates $n_{\gamma}^{TAG} \leq 2$ • correlation missing energy and tag momentum: $p_{tag}^{CM} > 1.1 \cdot \log(\cos \theta_{miss-thrust}^{CM} + 0.92) + 5.5$ and $n_{\gamma}^{CM} < 5 \cos \theta_{\gamma}^{CM} = +7.8$	
Dominant BG	$\tau {\rightarrow} \rho \gamma \ , \tau {\rightarrow} e \nu \bar{\nu} \gamma \ , e e, \mu \mu, q \bar{q}$		• leptonic decay: $p_{miss} > -10m_{miss}^2 + 4$ and $p_{miss} > 1.1m_{miss}^2 - 0.3$	
Luminosity	$339 {\rm fb}^{-1}$		• hadronic decay: $p_{miss} > -5m_{miss}^2 - 0.25$ and $p_{miss} > 2.1m_{miss}^2 - 0.3$	
Signal efficiency	$4.75 \pm 0.37 \%$	2D-cut param.	· ΔE , M_{inv} (reconstructed invariant mass of τ), 2σ around peak	
Expected BG	$1.33 \pm 0.15 \ (2\sigma \text{-box})$	Dominant BG	$\tau \to \pi^{\perp} \pi^{\circ} \nu_{\tau}$	
Resolution	$\sigma(m_{\rm EC}) = 9.0 {\rm GeV/c^2}, \sigma(\Delta E) = 46.4 {\rm MeV}$	Luminosity	$\cdot 401 \text{fb}^{-1}$	
Upper limit	$1.1 \cdot 10^{-7} (90\% \text{ C.L.})$	Signal efficiency	· 4.53 %	
		Expected BG	(0.58 ± 0.34)	
		Resolution	$ \begin{array}{l} \cdot \ \sigma^{\text{nsw}}(M_{\text{inv}}) = 14.9 \text{MeV}/\text{c}^2, \ \sigma^{\text{nsw}}(M_{\text{inv}}) = 19.1 \text{MeV}/\text{c}^2 \\ \cdot \ \sigma^{\text{high}}(\Delta E_{\text{inv}}) = 33.8 \text{MeV}/\text{c}^2, \ \sigma^{\text{low}}(\Delta E_{\text{inv}}) = 63.0 \text{MeV}/\text{c}^2 \end{array} $	

16.11.21

Upper limit

 $1.2 \cdot 10^{-7}$ (90% C.L.)