Constraining generalized Dark Matter-Nucleon Interactions based on Dark Matter Capture in the Sun with IceCube

| 1. Introduction | 2. Theory | 3. Method | 4. Results    | 5. Summary                 |         |
|-----------------|-----------|-----------|---------------|----------------------------|---------|
| Dark Matter     |           |           | SUNG KYUN KWA | N RWTHAACHEN<br>UNIVERSITY | ICECUBE |

#### Estimated matter-energy content of the Universe



- Non-luminous
- Compelling observational evidence
- Its nature remains unknown

### How to detect dark matter?









Motivation: standard spin-dependent (SD) and spin-independent (SI) interactions can be suppressed or forbidden → include velocity and momentum dependent interactions

$$\begin{array}{c} \text{standard assumption}'' \\ \text{SD} \\ \text{S$$

**Goal:** Constrain isoscalar and isovector **coupling constants** of all interaction operators (4, 14 and 18 for spin-0, spin-1/2 and spin-1 DM)





## The IceCube Neutrino Observatory



Image: Yuya Makino, IceCube/NSF

- Neutrinos undergo deep-inelastic scattering in the Antarctic ice
- Optical detection of of Cherenkov light emitted by secondary charged particles





Goal: Constrain isoscalar and isovector coupling constants of all interaction operators

- Capture rate is proportional to coupling constant squared:  $\ C_{cap} \propto c^2$
- Use proportionality to **convert limits** from IceCube solar dark matter searches

$$(c_i^{limit})^2 = rac{C_{cap}^{limit}}{C_{cap,i}}c_0^2$$
  
Calculate capture rates in the Sun for each interaction operator assuming  $c_i = c_0$   
Choose  $c_0 = 10^{-3}m_v^{-2}$   $m_v = 246.2$  GeV. (All other coupling constants are set to zero)

٠



| 1. Introduction | 2. Theory            | 3. Method                                         | 4. Results    | 5. Summary |
|-----------------|----------------------|---------------------------------------------------|---------------|------------|
| Capture Rate C  | alculation $(c_i^l)$ | $(mit)^2 = rac{C_{cap}^{limit}}{C_{cap,i}}c_0^2$ | SUNG KYUN KWA |            |





# **Results**

- Capture Rates
- Systematic Uncertainties
- Limits on the Coupling Constants



- Most relevant elements can be H1, He4, N14, O16, Al27 or Fe56
- Dependence on momentum transfer  $\rightarrow$  suppression of lighter elements





 Standard Assumptions: Maxwellian distribution with rotational velocity of 220 km/s, dispersion of 270 km/s and no galactic escape velocity



→Operators which are dominated by hydrogen are affected at smaller dark matter masses



15.11.2021

Lilly Peters

19

| 1. Introduction | 2. Theory | 3. Method | 4. Results    | 5. Summary |     |
|-----------------|-----------|-----------|---------------|------------|-----|
| Summary         |           |           | SUNG KYUN KWA |            | JBE |

- Calculated capture rates of dark matter in the Sun within the general effective theory of isoscalar and isovector dark matter-nucleon interactions in the nonrelativistic regime
- The theory predicts four, 14 or 18 interaction operators for dark matter particles with spin 0, spin 1/2 or spin 1 with a non-trivial dependence on velocity and momentum transfer
- Studied impact of systematic uncertainties on the capture rate, in particular the velocity distribution of dark matter particles in the Galaxy and the elemental composition of the Sun
- Used the computed capture rates to convert exclusion limits on the capture rate by IceCube into limits on the coupling constants of the theory
- Leading limits for various interaction types, dark matter masses and annihilation channels

## Thank you for your attention!



| 1. Introduction | 2. Theory | 3. Method | 4. Results    | 5. Summary                        |         |
|-----------------|-----------|-----------|---------------|-----------------------------------|---------|
| DM Response F   | Functions |           | SUNG KYUN KWA | N <b>RWTHAACHEN</b><br>UNIVERSITY | ICECUBE |

$$\begin{split} \mathsf{R}_{M}^{\tau\tau'} \left( v_{T}^{\pm 2}, \frac{q^{2}}{\mathfrak{m}_{N}^{2}} \right) &= c_{1}^{\tau} c_{1}^{\tau'} + \frac{j_{X} (j_{X} + 1)}{3} \left( \frac{q^{2}}{\mathfrak{m}_{N}^{2}} v_{T}^{\pm 2} c_{5}^{\tau} c_{5}^{\tau'} + v_{T}^{\pm 2} c_{8}^{\tau} c_{8}^{\tau'} \right) \\ &\quad + \frac{q^{2}}{\mathfrak{m}_{N}^{2}} c_{1}^{\tau} c_{1}^{\tau'} c_{1}^{\tau'} \right) \\ &\quad + \frac{q^{2}}{\mathfrak{m}_{N}^{2}} c_{1}^{\tau} c_{1}^{\tau'} c_{1}^{\tau'} \right) \\ &\quad + \frac{q^{2}}{\mathfrak{m}_{N}^{2}} c_{1}^{\tau} c_{1}^{\tau'} c$$

1. Introduction2. Theory3. Method4. Result5. SummaryCapture Rate Calculation
$$C_{cap}^{T} = n_{\chi} \int_{0}^{R_{\odot}} dr \ 4\pi r^{2} n_{T}(r) \int_{0}^{\infty} du \ 4\pi u^{2} f_{\odot}(u) \frac{u^{2} + v_{\odot}^{esc}(r)^{2}}{u} \cdot \int_{E_{min}}^{E_{max}} dE_{R} \ \frac{d\sigma_{T}}{dE_{R}} \theta(\Delta E)$$
 $E_{min} = \frac{1}{2} M_{\chi} u^{2}$ ,  $E_{max} = \frac{2\mu_{T}^{2}}{m_{T}} (u^{2} + v_{\odot}^{esc}(r)^{2})$ ,  $\Delta E = E_{max} - E_{min}$ 

→ Integration over u has effectively an **upper bound**  $u_{max}$  where  $E_{min} = E_{max}$ →  $u_{max}$  is **smaller** for **heavier** dark matter masses and **lighter** target elements





→ Integration over u has effectively an **upper bound**  $u_{max}$  where  $E_{min} = E_{max}$ →  $u_{max}$  is **smaller** for **heavier** dark matter masses and **lighter** target elements



- Two hydrogen dominated operators
- They contain the spin dependent nuclear response operators  $\Sigma'$  and  $\Sigma''$
- Capture rate generated by operator 7 is smaller due to velocity suppression



- Operator 6, 9, 10, 13 and 14 also contain only  $\Sigma'$  and  $\Sigma''$
- Depend on **momentum transfer** → suppression of lighter elements
- In addition to the suppression of lighter elements due to a lower maximum accessible velocity  $u_{max}$  this leads to a **domination of nitrogen** at large DM masses



- Iron dominated operators
- Dominant response Φ" that favors heavy elements with orbits of large angular momentum



- The standard SI response **M** favors heavy elements
- For Operator 5 and 8 additionally  $\Delta$  contributes ( $\rightarrow$  Nitrogen)

| 1. Introduction | 2. Theory | 3. Method        | 4. Results    | 5. Summary                  |         |
|-----------------|-----------|------------------|---------------|-----------------------------|---------|
| Capture Rates   |           | spin ½ isoscalar | SUNG KYUN KWA | N RWITHAACHEN<br>UNIVERSITY | ICECUBE |











15.11.2021

Lilly Peters



33







- $\rightarrow$  Hydrogen dominated O4 and O7 least affected
- $\rightarrow$  Largest effect for O16 dominated interaction types (up to 18%)
- ightarrow Less deviation for isovector interactions because N14 and O16 do not contribute



→ Velocity and momentum dependence in operators is **subdominant** 

 $\rightarrow$  Capture rate is less sensitive to changes in the velocity distribution with increasing order of q and decreasing order of v







 $f(\mathfrak{u}) = (1 - \eta_{sub})f_{halo}(\mathfrak{u}) + \eta_{sub}f_{sub}(\mathfrak{u}).$ 

