

Enhanced Search Sensitivity to Double Beta Decay of <sup>136</sup>Xe to Excited States with Topological Signatures

Chen Xie

2021/11/16

## PandaX-III group: search for NLDBD of <sup>136</sup>Xe



TPC: 140 kg scale high pressure gaseous TPC with 52 20×20cm<sup>2</sup> Micromegas
Main design features: good energy resolution and tracking capability



Majorana Neutrino  $ar{m{V}}=m{V}$ 







## **Location of PandaX series experiments**



The schematic diagram (left) and depth of China Jinping Underground Laboratory

#### 2021/11/16

## 2021/11/16

## $0^+ \rightarrow 0^+_1$ accompanied by a de-excitation process

## > Motivation:

To identify NLDBD-ES signals from various background

| Comment    | Material        | Size             | Activity               |                        |                  |                 |
|------------|-----------------|------------------|------------------------|------------------------|------------------|-----------------|
| Component  |                 |                  | <sup>238</sup> U       | <sup>232</sup> Th      | <sup>60</sup> Co | <sup>40</sup> K |
| Vessel     | Stainless Steel | 2.5 t            | 500 $\mu$ Bq/kg        | 320 <i>µ</i> Bq/kg     | -                | -               |
| Liner      | Copper          | 22.63 t          | $0.75 \ \mu Bq/kg$     | $0.2 \ \mu Bq/kg$      | 2                | 23              |
| Field Cage | Acrylic         | 723 kg           | 13.68 µBq/kg           | 4.48 $\mu$ Bq/kg       | -                | -               |
| Micromegas | Copper          | 2 m <sup>2</sup> | 45 nBq/cm <sup>2</sup> | 14 nBq/cm <sup>2</sup> | -                | -               |







## I. Simulation of (NL)DBD-ES of <sup>136</sup>Xe

## II. Hardware work

Master thesis work:

NLDBD-ES of <sup>136</sup>Xe:

## **Work Flow**



#### 2021/11/16



2021/11/16

6

## **Result:**



## > TMVA output of $2e+1\gamma$ (1639 $\pm$ 51keV) ROI



| Topological | Sig Eff | Bck Eff              | Sensitivity *[yr]            | Reference value [yr]                         |
|-------------|---------|----------------------|------------------------------|----------------------------------------------|
| NLDBD-ES    | 43%     | 5.0×10 <sup>-4</sup> | 1.7×10 <sup>25</sup> (90%CL) | $2.4 	imes 10^{25}$ by KamLAND-Zen           |
| DBD-ES      | 56%     | 9.6×10 <sup>-2</sup> | 4.1×10 <sup>23</sup> (90%CL) | 10 <sup>23</sup> ~10 <sup>25</sup> in theory |

\*: Sensitivity is calculated based on 3 years exposure.

Sensitivity of NLDBD-ES and DBD-ES of 136Xe could be improved by a factor of 4.8 and 1.8 with topological signatures

#### 2021/11/16



## Hardware work: I. Detector Design II. Mini TPC Test



## **PandaX-III TPC Detector**





#### 2021/11/16

## **Deformation Simulation of Readout Plane**



## **Design of Installation Procedures**

Static Simulation:

Assuming that the total weight is 1500 N and evenly distributed on the readout plane (the total weight of 5mm-thickness MM plates and other components):

Max Displacement: 0.18mm Max Stress: 14.1MPa





2021/11/16

SHANGHAI JIAO TONG

5.

**UNIVERSITY** 



#### 2021/11/16

#### Hardware work: I. Detector Design II. Mini TPC Test





Gain vs. mesh or drift voltage

#### 2021/11/16

#### The second version of mini TPC

First Phase TPC (52 MMs)

Mini TPC (1 MMs)





Prototype TPC (7 MMs)



Flexible PCB Board





2021/11/16

## **Summary**

Simulation work 2019-2021
(*published in April*)
1. NLDBD-ES
2. DBD-ES

- Hardware work 2016-2021
  - 1. Detector Design
  - 2. Mini TPC test:
    - 2.1 the testbed of Micromegas 2.2 PCB board-version works

Enhanced search sensitivity to the double beta decay of <sup>136</sup>Xe to excited states with topological signatures

Chen Xie<sup>1</sup>, Kaixiang Ni<sup>1</sup>, Ke Han<sup>1\*</sup>, and Shaobo Wang<sup>1,2\*</sup>

<sup>1</sup>Institute of Nuclear and Particle Physics (INPAC), Shanghai Laboratory for Particle Physics and Cosmology, Key Laboratory for Particle Astrophysics and Cosmology (MOE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; <sup>2</sup>PartisTech Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China;

Received December 10, 2020; accepted March 22, 2021; published online April 29, 2021

The double beta decay of <sup>136</sup>Xe to excited states of <sup>136</sup>Ba (DBD-ES) has not yet been discovered experimentally. The experimental signature of such decays, one or two gamma rays following the beta signals, can be identified more effectively in a gaseous detector with the help of topological signatures. We have investigated key parameters of particle trajectories of DBD-ES with Monte Carlo simulation data of the proposed PandaX-III detector as an example. The background rates can be reduced by about one order of magnitude while keeping more than half of signals with topological analysis. The estimated half-life sensitivity of DBD-ES can be improved by 1.8 times to  $4.1 \times 10^{23}$  year (90% C.L.). Similarly, the half-life sensitivity of neutrinoless double beta decay of <sup>136</sup>Xe to excited states of <sup>136</sup>Ba can be improved by a factor of 4.8 with topological signatures.

neutrino, double beta decay, topological signatures, background suppression

PACS number(s): 14.60.Pq, 29.40.Gx, 23.40.-s

Citation: C. Xie, K. Ni, K. Han, and S. Wang, Enhanced search sensitivity to the double beta decay of <sup>106</sup>Xe to excited states with topological signatures, Sci. China-Phys. Mech. Astron. 64, 261011 (2021), https://doi.org/10.1007/s11433-020-1693-6



2021/11/16



# Thanks!





## PandaX (Particle and Astrophysical Xenon)

- > Target: search for Dark Matter (PandaX-IV) and Neutrinoless Double Beta Decay (PandaX-III)
- > Detector: liquid and gaseous <sup>136</sup>Xe Time Projection Chamber (TPC)



PandaX Collaboration Group



## Latest result of PandaX-4T

Exposure: 0.63 ton•year

## Dark matter candidates



6 events in the signal region But they are all backgrounds



#### WIMP-nucleon exclusion limits



Our limit is  $\sim 1.3$  times stronger than XENON1T around  $40 \text{GeV}/c^2$ 

#### 2021/11/16