

Characterization of the Performance of the MAGIC LIDAR

IMPRS recruiting workshop

15.11.21

Felix Schmuckermaier

MAX-PLANCK-INSTITUT FÜR PHYSIK

Background:

The MAGIC telescopes & the LIDAR

The MAGIC telescopes

- Indirect gamma-ray detection by detecting atmospheric air showers
- Two IACTs (M1 & M2) with 17 m mirror diameter
- Energy range between ~50 GeV until ~50 TeV

Main advantages of IACTs:

- Using the atmosphere as a calorimeter to achieve large effective areas (~km²)
- Detection of lower photon fluxes compared to satellites

Challenges:

- Atmosphere is part of the detector
- Variable down to minutes
- Sub-optimal atmospheric conditions impair reconstruction of air showers

→ Atmospheric monitoring is necessary

La Palma:

The MAGIC LIDAR system

Structure:

- Aluminum telescope frame controlled by commercial telescope mount
- Nd:YAG laser with 25 μ J at 532 nm
- 60 cm aluminum mirror
- Hybrid photo detector (HPD)

Goals:

- 1. Characterize data quality due to atmospheric conditions
- 2. Corrections of atmospherically impaired data

LIDAR return signal: clear night

LIDAR return signal: impaired night

Example correction of a Crab spectrum

Uncorrected and corrected spectrum:

Performance of the MAGIC LIDAR | Felix Schmuckermaier

Characterization of the performance of the LIDAR

Quantification of the correction

Crab Nebula:

- Using seven years of Crab data (2013-2020)
- Divide data into four transmission from 9 km bins:
 - 0.55 to 0.7 ("low transmission")
 - 0.7 to 0.85 ("medium transmission")
 - 0.85 to 0.93 ("high transmission")
 - above 0.93 ("Reference", perfect atmosphere)
- Fit log-parabola with *b* fixed to value from reference Crab spectrum:

$$\frac{d\phi}{dE} = f \cdot \left(\frac{E}{200 \ GeV}\right)^{a - b_{ref}^2 \cdot \log_{10}\left(\frac{E}{200 \ GeV}\right)}$$

Quantifying deviations of fitted parameters **f** and **a** in two ways:

• In percentage:
$$D_i[\%] = \left| \frac{p_i}{p_{ref}} - 1 \right| \cdot 100$$

• In terms of
$$\sigma$$
: $D_i[\sigma] = \frac{|p_i - p_{ref}|}{\Delta p_i}$

 \rightarrow Average deviations over all nights

Crab Nebula (https://hubblesite.org)

15/11/21

Improvements of the parameter *f*: $\frac{d\phi}{dE} = f \cdot \left(\frac{E}{200 \ GeV}\right)^{a - b_{ref}^2 \cdot \log_{10}\left(\frac{E}{200 \ GeV}\right)}$

5° - 35°:

10

8

10

8

6

4

10

8

6

4

Mean dev [σ]

n=3

sig_lidar

Mean dev [σ]

Mean dev [σ]

n=14

n=7

- Only slight improvements
- Data usable without LIDAR corrections

- Full reconstruction after correction
- Data unusable without applying • corrections (or with higher systematic uncertainties)
- Strong improvements but insufficient reconstruction
- Data only usable with higher • systematic uncertainties

Improvements of the parameter *a*: $\frac{d\phi}{dE} = f \cdot \left(\frac{E}{200 \ GeV}\right)^{a - b_{ref}^2 \cdot \log_{10}\left(\frac{E}{200 \ GeV}\right)}$

5° - 35°:

50° - 62°:

- No significant improvement
- Spectral shape already accurate on average

Summary

Summary

- MAGIC is currently the only IACT using a LIDAR for data correction
- Presented work is part of the first systematic investigation of the correction capabilities of the LIDAR over seven years, from 2013 until 2020
- Results are going to be used as guidelines for analyzers of MAGIC data:
 - 1) To decide when to accept/reject data
 - 2) To improve reliability of high-level results (e.g. spectra, light curves)
- Data sample was also used to study different correction algorithms

Backup

Ground-based gamma-ray astronomy

Atmospheric air showers:

Imaging Atmospheric Cherenkov Telescopes (IACTs):

→ Emission of Cherenkov light by charged secondary particles
→ Detection of shower through the detection of the Cherenkov cone

IACT method (Hinton and Hofmann, 2009)

Analysis of LIDAR data

1. Detection of the return signal

 Number of backscattered photons as a function of height above the MAGIC telescopes

2. Extraction of the extinction profile

• Backscattered photons reveal the extinction due to excess aerosols (e.g. clouds, Calima,...) in the atmosphere

3. Generation of the transmission curve

- Resulting integral transmission due to excess aerosols
- Transmission profile allows correction of energy and effective area of a given gamma-ray event

Correction of MAGIC data

Correction of the energy:

- Number of emitted photons proportional to energy
- Lower transmission results in underestimation of the reconstructed energy
- Transmission profile allows correction of the estimated emission profile

Correction of the effective area

- A_{eff} necessary for the computation of fluxes
- Determination of A_{eff} from MC data
- Decreasing of the trigger efficiency due to lower transmission
- Impaired showers resemble shower with lower energy under perfect conditions

Construction of the reference spectra

- Crab Nebula chosen as reference source due to bright and stable emission
 → Large amounts of archival data
- Data with T_{9km} > 0.93 used to build reference spectra
- Data cover time period from mid 2013 until early 2020 (Time between start of LIDAR operations until beginning of thesis)
- Period covers eight *analysis periods*
- Each spectrum fitted with a log-parabola function:

 $\frac{d\phi}{dE} = f \cdot \left(\frac{E}{200 \ GeV}\right)^{a - b^2 \cdot \log_{10}\left(\frac{E}{200 \ GeV}\right)}$

 Obtained eight reference spectra to compare uncorrected and corrected impaired data taken under non-perfect atmospheric conditions

Combined spectra

- Only slight improvements above 0.85
- Data usable without corrections

- Full reconstruction for all zenith angles
- Data unusable without applying corrections (or with higher systematic uncertainties)

- Strong improvements but insufficient reconstruction at T_{9km} < 0.7
- Data usable with higher systematic uncertainties

Volcano eruption in 2021

- The volcanic ridge, Cumbre Vieja, started erupting on September 19 and is active to this day
- Caused by earthquake from September 11
- Ash plumes cause higher aerosol content in the atmosphere and ash deposition around the island
- Caused MAGIC to stop operations for the foreseeable future

The course of the lava flow between the eruption location and the sea, seen by Copernicus on 1 October.

(Both images from https://en.wikipedia.org/wiki/2021_Cumbre_Vieja_volcanic_eruption)

LIDAR observations of the volcano eruption

The MAGIC LIDAR as well as the Barcelona Raman LIDAR of CTA took data during September 22:

LIDAR observations of the volcano eruption

Example observation of the MAGIC LIDAR:

