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Heavy Flavour production

Heavy Flavour (HF) hadrons = hadrons with beauty or charm quarks
● c- and b-quarks: produced in high-Q2 partonic processes  perturbative approach →

is possible;
● In proton-proton (pp) collisions  test of perturbative Quantum Chromodynamics →

(pQCD) calculations and the Factorisation Theorem:

Factorisation theorem: the cross section of a hadron can be computed as the following 
convolution:

Parton Distribution Functions
(non perturbative)

Partonic cross section
(perturbative)

Fragmentation Function
(non perturbative)
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Prompt and non-prompt components

Two contributions to charm hadron production:

1) Prompt:
 from the hadronisation of the charm quark or
 decay of excited charm-hadron states.

2) Non-prompt (NP):
 from the decay of a beauty hadron.

● Measured D meson cross section in good 
agreement with pQCD (FONLL).
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Hadronisation of charm and beauty quarks

Difficult because of:
     → Small beauty cross section;
     → Small branching ratios;

Measure the non-prompt Λ+
c production:

     → access to the physics of the b-quark;
     → in nature: 5÷10%, depending on pT;
     → no measurements existed;
     → decay channel: Λ+

c→ pK0
s  pπ→ +π-;

     → study non-prompt Λ+
c/ non-prompt D0.

e+e-

Prompt

Recent measurements: the hadronisation of 
the charm quark (  → Λ+

c/D0) is not independent 
of the collision system! Open point...

Hadronisation of charm Hadronisation of beauty… ?

Exclusive Hb measurements

Non-prompt (This work)
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The ALICE detector

ITS (Inner Tracking System):
● track and vertex reconstruction

TPC (Time Projection Chamber):
● track reconstruction;
● particle identification (PID).

TOF (Time Of Flight):
● particle identification.

Data collected between 2016 and 2018:
● center-of-mass energy √s = 13 TeV;
● 1.84 × 109 Minimum Bias pp collisions;
● Lint= 32 nb-1;
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Decay topologies: prompt, non-prompt and background

Background mostly from protons and K0
s coming 

from the interaction point;

Mean proper decay length:
 → cτ(Λ+

c) = 60 μm;
 → cτ(Λ0

b) = 440 μm.

To separate the three contributions:
● exploit the decay topology;
● use Machine Learning: multi-class 

classification algorithm based on 
Boosted Decision Trees (BDTs)
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Machine learning 
4 < pT < 6 GeV/c

The Λ+
c candidates are selected by requiring:

● high probability to be a non-prompt Λ+
c;

● low probability to be a background candidate.

Datasets:
● Background: from the data;
● Signal: from Monte Carlo simulations.

Training variables:
● decay-vertex topology;
● PID of the decay products.

Probability (scores) of being:
● Prompt;
● Non-prompt;
● Background.

BDT

p(Non-prompt      )

Non-prompt

Non-prompt



15 Nov 2021 Daniel Battistini 8

Estimation of the non-prompt fraction

Cut variation method:
Different cut sets  different efficiencies for prompt and non-prompt.→

Compute the number of Λ+
c candidates (raw yield Y) and efficiencies for each cut set.
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Cut variation method

For each cut set i:

Where:
 → Yi are the (measured) raw yields;
 → εi

p/np are the efficiencies;
 → Np/np are the true yields;

A system of equation is defined using many cut sets.

● n equations and 2 variables (Np
 and Nnp);

● The system is overdetermined;
● Solved minimising a χ2-like quantity.
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Prompt and non-prompt contributions

The fit-like result (left) and the fraction of prompt/non-prompt (right).
● Prompt (red) and non-prompt (blue) Λ+

c contributions as obtained from the cut-
variation method;

● Green line  fit-like function;→
● For the central selection: high non-prompt fraction ~50%.

Central selection
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Non-prompt Λ+
c cross section

Non-prompt cross section:

Models obtained from pQCD calculations.
Fragmentation fractions from LHCb.

Two possible decay tables for the Hb decay:

● PDG decay table:
 → only measured decays;
 → BR(Λ0

b  Λ→ +
c + X) ~ 30%.

● PYTHIA8 decay table:
 → also unobserved decays;
 → BR(Λ0

b  Λ→ +
c + X) ~ 80%.

Non-prompt Λ+
c pT-differential cross section.

(Not shown as it is not public yet)
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Summary and Outlook

Summary:
● First measurement of the non-prompt Λ+

c cross section in pp was obtained;
● Described by pQCD calculations within uncertainties;

 → Better agreement with the FONLL prediction that uses the PYTHIA8 decay
 table, suggesting the presence of unobserved decays of type Hb  → Λ+

c + X.

● Reference measurement for non-prompt Λ+
c studies in PbPb collisions during the 

future LHC data-taking period.

Next steps:
● Compare with the non-prompt Λ+

c  pK→ π analysis (ongoing);
● Combine the results and publish. 



Thank You!



Backup
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Models for the charm and beauty production

● PYTHIA8 (Monash): colour string fragmentation model. 
Tuned on e+e- fragmentation fractions. Does not describe 
the data.

● PYTHIA8 (CR-BLC): Colour Reconnection Beyond 
Leading Colour. Colour strings fragmentation model + 
colour strings can reconnect  larger production of →
baryons. In agreement with the data.

● Catania and Quark (re-)Combination Model (QCM): 
implement a partonic coalescence mechanism, 
i.e., the quarks can combine with the other quarks 
produced in the collision. In agreement with the 
data.

● SHM + RQM: Statistical Hadronisation Model + 
Relativistic Quark Model: statistical model that describes 
the abundances of particles using a partition function. 
Augmented non-prompt fraction from the RQM. In 
agreement with the data.
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The ALICE performance

Tracking and vertex reconstruction
● ITS + TPC

Resolutions:
● Imp. Par. ~70 μm at pT = 1 GeV/c;

PID
TPC (energy loss  d→ E/dx)
TOF (time of flight  → β)

Different distribution for particles 
with different mass and charge.

K0
s reconstruction

σ(Mass) ~5 MeV/c2

High S/B ratio
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Topological variables

Λ+
c variables:

● Decay length,
● Decay length in xy plane,
● Decay length in xy plane/uncertanty,
● Cosine of pointing angle,
● Cosine of pointing angle in xy plane,
● Impact parameter,
● Impact parameter in xy plane,

V0 variables:
● Decay length,
● Cosine of pointing angle,
● Impact parameter.

Very loose selections are applied to 
some of these variables in order to 
build the training set

Other variables:
● Impact parameter of proton 

in xy plane with sign,
● Kalman Filter Particle 

topological χ2.
● Impact parameter of prong 0
● Delta mass K0

s,
● cτ(K0

s).

The whole analysis relies on the displacement of the feed-down Λ+
c baryons, therefore, 

topological variables of the Λ+
c candidate, the bachelor (proton) and the V0 (K0

S) are used.
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PID

PID variables of the proton products:
nσ combined proton, pion hypothesis;
nσ combined proton, proton hypothesis.

The TPC detector measures the energy loss dE/dx 
and the TOF detector measures the time of flight. 
From these the nσ variables are computed, which 
are defined as:

where S is the energy loss or the time of flight. 
These variables are then combined in a single one.
In case of missing values, zero is used instead.
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Machine Learning

For the training, a pure background 
sample is selected from the data, using 
the sidebands of the invariant mass 
distribution.
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Machine Learning

Machine Learning (ML) algorithms:
 → Exploit high-order correlation between data;
 → Better performance than rectangular selections;
 → Easily handle many variables;

Classification algorithms usually require the following step:
1)Learning phase (Training): the model learns from 

many examples of a labelled  dataset;
2)Hyperparameter optimisation: find the optimal 

configuration of the model settings;
3)Testing: check the performance with an independent 

 labelled dataset;
4)Application: apply the model to the unlabelled data.

The ML model used is a Boosted Decision Tree.

Feature 1 > w1

Class A

Class B Class A

Feature 2 < w2

T F

T F

Object i
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Bias-Variance trade-off

The choice of the model and its hyperparameters must take into account the size 
of the available dataset.

In-sample error:
Mistake rate in the 
training set.

Out-of-sample error:
Mistake rate in the 
test set.
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Boosted Decision Trees: Bias-Variance tradeoff

The choice of the model complexity is 
crucial for finding a good solution to 
the problem.

Model complexity  hyperparameters→

Overfit: the model learns the 
fluctuactions in the training set

Underfit: the model is not complex 
enough to exploit the full information 
contained in the features of the data 
points.
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Hyperparameter optimisation

Optimisation of hyperparameters:
The models depends on a number of 
hyper-parameters that the user 
chooses and that have to be 
optimised. For BDT, typical hyper-
parameters are the number of trees, 
the learning rate, the depth of the 
trees.

 → 5-folds cross validation

 → Bayesian approach:
the configuration to test is 
determined according to the 
performance of the previous 
hyperparameter configurations.
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Hyperparameter optimisation

● max_depth: the maximum depth of the binary classifier;

● learning_rate: the weighting factor that is applied to the updates of the model 
parameters;

● n_estimators: the number of estimators used in the boosting of the model.

● min_child_weight: the sum of the Hessian of the loss function over the 
instances in a node. For classification, this parameter is related to the 
minimum purity required to stop splitting the node.

● subsample: the fraction of the training instances used to train the tree;

● colsample_by_tree: the fraction of the training variables used in the training of 
the tree.

For more details see: https://xgboost.readthedocs.io/en/latest/parameter.html
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BDT scores

4 < pT < 6 GeV/c
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Performance of the model

For a given threshold t, we can define the First 
Class Efficiency (FCE) defined as:

Second Class Efficiency defined analogously.

ROC (Receiver Operating Characteristic) curves 
correlate the FCE and SCE.

The performance of the model is quantified with 
the AUC (Area Under the Curve) of the ROC 
curve.
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Optimisation of the ML selection

● (Pseudo-)signal S from pQCD calculations and 
efficiencies from simulations;

● Background yield B from a sub-sample of data 
and rescaled to full sample

Selection criteria on BDT scores optimised based 
on significance and fnp: 

Are selected the candidates with:
● Bkg score < Bkg_thr
● Non-prompt score > NP_thr.
The thresholds are then varied in the represented range.

2 pairs of cuts (bkg_thr, NP_thr) are chosen in order to 
maximise:
● the significance  prompt enhanced (Prompt En);→
● the NP fraction  non-prompt enhanced (NP En).→
The threshold of the NP enhanced configuration is 
chosen to maximise fnp while preserving a significance >7

Prompt En

NP En

Prompt En

Bkg score thr Bkg score thr
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Extraction of raw yields
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Prompt Enhanced Non-prompt Enhanced

● Fit to the pK0
s invariant mass distribution with the sum of a parabola for 

the background and a Gaussian function for the signal;
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Correlation and efficiency

Correlation matrix of the yields:
● With increasing cut set number the cut on the non-prompt score is 

progressively more severe;
● the correlation is stronger between closer cuts;
● Assumption: full correlation between yields obtained with tighter sets of cuts;

Efficiencies:
● the efficiency of prompt candidates decreases more rapidly than the efficiency 

of non-prompt.
● the non-prompt enhanced selection is the number 11;
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Estimation of the covariance matrix

● Small S/B ratio  random fluctuations of the ⇒
background might influence the RY 
extraction. If the background is not negligible 
the formula 

is no longer valid. The complete analytic 
propagation of errors is:

● But it fails since it’s not guaranteed that B i 
and Sj have an empty intersection.

● Numerical estimation of the correlation 
matrix is performed instead via toy MC.



15 Nov 2021 Daniel Battistini 31

Estimation of the correlation matrix with toy MC

Correlation matrix of the 2-4 GeV/c pT interval  “chequerboard pattern”→ .
The sets are considered as fully correlated, which is true if the background is 
negligible. Otherwise, the extraction of the raw yields is sensitive to the 
background fluctuations.



15 Nov 2021 Daniel Battistini 32

Estimation of the correlation matrix with toy MC

Large background ⇒ large fluctuation on the RY extraction. This might even result in a larger RY for a 
harder selection on the ML score (as shown).
For this reason, we should consider the RY extraction as performed on partially correlated sets.
To take into account this effect, the correlation matrix was estimated with a toy MC approach.
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Estimation of the correlation matrix

To estimate the correlation between the RYs, 
many experiments are simulated with a ToyMC.
● A pair of cuts is selected, a looser and a 

tighter one. Then we generate a smeared 
version of the invariant mass spectra 
corresponding to these selection.

● To keep the correlation between the RYs the 
spectra are not smeared directly, but the 
tighter cut spectrum and the difference 
between the looser and tighter cut are 
smeared instead.

● The smeared spectra obtained are then are 
then added, so a spectrum corresponding to 
the looser cut is obtained.

● The looser and harder smeared spectra are 
fitted again and a pair of RY is extracted. 

● Repeating this calculations many times 
leads to an accurate estimation of the 
correlation matrix.

Distant cutsClose cuts
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2-4 GeV/c Correlation matrices compared

● The correlation matrix estimated with the toy MC is “smoother” than the 
approximated one where the sets are considered as fully correlated.

● The fully correlated one overestimates the correlation up to ~20% away from 
the diagonal and underestimates it up to ~10% near the diagonal.

● No significant effect on the estimation of the non-prompt fraction.
● The effect is negligible for the other transverse-momentum intervals.
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The cut variation method

● Let

● The χ2 is the quantity to minimise in order to estimate the Np/np

● Approximation: the raw yields are considered as obtained from fully correlated sets.

● The correlation between the deltas is expressed as

● Where the uncertainty on the deltas is computed as 
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Prediction for the non-prompt cross section

FONLL:
 → cross sections of heavy quarks;
 → tuned with the fragmentation fractions from e+e- collisions;
 → good description of the B meson cross section;
 → for non-prompt Λ+

c a different approach is used.

For the decay Hb  → Λ+
c + X, the most relevant beautyhadrons 

are B0, B+, Bs, Λ
+

c.
The cross section of mesons is computed as:

While the Λ+
b cross section is computed as:

Then run a MC simulation:
1) randomly choose a beauty hadron Hb in {B0, 

B+, Bs, Λ
+

c} according to their abundances;
2) assign to it a transverse momentum obtained 

with a sampling of the corresponding cross 
section;

3) let the Hb decay with PYTHIA8 using the PDG 
or the PYTHIA8 decay table;

4) if the decay products contain a Lc  fill a →
histogram with its momentum;

5) Rescale the momentum distribution to obtain 
the non-prompt cross section.
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Mass shaping

Linear correlations between variables.

If the invariant mass of the candidates is correlated with some other variables used in the training, the 
model might learn these correlation and classify the ML scores might be dependent on the mass of the 
candidate. When this happens, a structure in the mass region is formed (mass shaping).

To check the mass shaping, a sample of pure background obtained from a general purpose MC is used 
to compare the shape of the spectrum before and after that the selection on ML output score is applied.
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Mass shaping
● Correlations between the invariant mass of the background candidates and their ML 

scores.
● No structure is found in the region of the signal peak. OK.

2 < pT < 4 GeV/c 4 < pT < 6 GeV/c

6 < pT < 8 GeV/c 8 < pT < 12 GeV/c
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Systematic uncertainties

Several sources of systematic uncertainties are identified:

Signal extraction:
✔ raw yield: the fit to the invariant mass distribution is repeated varying the fit settings;

Sources related to the corrections:
✔ tracking efficiency: compare ITS-to-TPC prolongation efficiency for charged tracks in 

data and MC and test stability of the cross section varying the single-track selection 
criteria (inherited from other analysis);

✔ML selection efficiency: evaluate stability of the cross section varying the selection 
criteria;

✔non-prompt fraction: vary the sets of selections used in the χ2-like minimisation of 
the system of equations;

✔MC pT shape: re-weight pT distributions of Λ+
c in MC to reproduce the data;
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Theory-driven subtraction of the non-prompt Λ+
c

Validation of the theory-driven subtraction of the feed-down:

Traditional way of computing the cross section of the prompt component.

The number of Λ+
c baryons measured is the sum of the prompt and non-prompt baryons. 

When calculating the production cross section of the prompt Λ+
c baryons, the feed-down 

component is subtracted with a theory-driven method based on pQCD calculations with 
FONLL.

From the cross section it’s possible to calculate the number of Λ+
c baryons that we expect, 

then the fraction of feed-down is simply:

A measurement of the non-prompt cross section would validate this method, the 
disadvantage is that the data-driven method is limited by the statistics.
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