

First Experimental Evidence of an Attractive Proton-φ Interaction

Emma Chizzali Technical University of Munich IMPRS Recruiting Workshop 15/11/2021

- Neutron stars
 - Equation of State (EoS) of dense hadronic matter depends on constituents and interactions among them

ТЛ

- Neutron stars
 - Equation of State (EoS) of dense hadronic matter depends on constituents and interactions among them
 - Hyperons might be present in core region (energetically favourable)

- Neutron stars
 - Equation of State (EoS) of dense hadronic matter depends on constituents and interactions among them
 - Hyperons might be present in core region (energetically favourable)

TIM

- Neutron stars
 - Equation of State (EoS) of dense hadronic matter depends on constituents and interactions among them
 - Hyperons might be present in core region (energetically favourable)
- φ meson as mediator of the interaction among hyperons (Y) in neutron stars
- From theoretical calculations assuming SU(3) symmetry

 $g_{\phi Y} \propto g_{\phi N}$ S. Weissborn et al., *Nuclear Physics A*, **881** (2012) 62-77

Genuine $p-\phi$ interaction

- Relevant for hadronic models used to describe $\varphi\text{-meson}$ properties within nuclear medium
- Expected to be suppressed by OZI rule
 - Hinders processed with disconnected quark lines
- Interaction might be mediated via channel coupling *Phys. Rev. C* **96** (2019) 034618, *Phys. Rev. C* **95** (2017) 015201
- Experimental method needed to measure the interaction

Correlation function

$$C(k^*) = \mathcal{N} \frac{N_{same}(k^*)}{N_{mixed}(k^*)} = \int S(\vec{r}^*) |\psi(\vec{k}^*, \vec{r}^*)|^2 d^3 \vec{r}^* \xrightarrow{k^* \to \infty} 1$$

experimental definition
theoretical definition
S. Pratt, Phys. Rev. C 56 (1997) 1095
S.E. Koonin, Phys. Rev. B 70 (1977) 43
Relative momentum $\vec{k}^* = \frac{1}{2} |\vec{p}_1^* - \vec{p}_2^*|$ and $\vec{p}_1^* + \vec{p}_2^* = 0$
Relative distance $\vec{r}^* = \vec{r}_1^* - \vec{r}_2^*$

Correlation function

Correlation function

Analysis

- High-multiplicity (HM) pp collisions at $\sqrt{s} = 13$ TeV
- Particle identification with ALICE Detector
 - Proton detected directly
 - Proton purity of 99% ALICE Collab., Phys. Lett B 811 (2020) 135849
 - ϕ candidates reconstructed from $\phi \rightarrow K^+K^-$
 - Purity of 66%

https://alice-figure.web.cern.ch/node/11219

 $C_{exp}(k^*) = C_{femto}(k^*) \cdot C_{non-femto}(k^*)$

$$C_{femto}(k^*) = \sum \lambda_{ij} \cdot C_{ij}(k^*)$$

$$C_{exp}(k^*) = C_{femto}(k^*) \cdot C_{non-femto}(k^*)$$

 $\begin{array}{l} \underline{\text{Contributions from FSI}}_{\text{purity }}(\text{femto}) \text{ quantified by} \\ \text{purity } (\mathcal{P}_i) \text{ and feed-down fractions } (f_i) \text{ via} \\ \lambda_{ij} = \ \mathcal{P}_1 \cdot f_{i_1} \cdot \mathcal{P}_2 \cdot f_{j_2} \end{array}$

- Present in previous meson-meson and meson-baryon analyses ALICE Collab. Phys. Rev. Lett. **124** (2020) 092301
- Auto-correlated p and ϕ emitted in jet-like structures
- Well described by Pythia 8 ALICE Collab., Phys. Rev. D 84 (2011) 112004

Non-femtoscopic background

 φ candidates reconstructed via invariant mass of K⁺K⁻

- φ candidates reconstructed via invariant mass of K⁺K⁻
- Finite purity of reconstructed ϕ \rightarrow correlation signal from 2-body interaction between p, K⁺ and K⁻

- φ candidates reconstructed via invariant mass of K⁺K⁻
- Finite purity of reconstructed ϕ \rightarrow correlation signal from 2-body interaction between p, K⁺ and K⁻
- Accessed by sideband analysis

Total Background

Observation of **attractive** p-φ interaction

- Scattering parameters extracted by employing the **analytical** Lednicky-Lyuboshits approach R. Lednicky and V.L. Lyuboshits, *Sov. J. Nucl. Phys.* **53** (1982) 770
- Imaginary contribution to the scattering length $f_{\rm 0}$ accounts for inelastic channels

 $d_0=7.85\pm1.54(stat.)\pm0.26(syst.)$ fm Re(f₀)=0.85±0.34(stat.)±0.14(syst.) fm Im(f₀)=0.16±0.10(stat.)±0.09(syst.) fm

- Elastic p– φ coupling dominant contribution to the interaction in vacuum

ALI-PUB-486981

• Yukawa-type of potential with real parameters Phys. Rev. Lett. 98 (2007) 042501

•
$$V(r) = -A \cdot \frac{e^{-\alpha r}}{r}$$

• CF obtained numerically using CATS framework D.L. Mihaylov et al, *Eur. Phys. J.* C78 (2018) no.5, 394

Strength A = $0.021 \pm 0.009(\text{stat.}) \pm 0.006(\text{syst.})$ Inverse range $\alpha = 65.9 \pm 38.0(\text{stat.}) \pm 17.5(\text{syst.})\text{MeV}$

• Extraction of N– ϕ coupling constant as \sqrt{A}

 $g_{\phi N}=0.14\pm0.03(stat.)\pm0.02(syst.)$

Link to Y−Y interaction g_{φY} ∝ g_{φN} and NS
 S. Weissborn et al., Nuclear Physics A, 881 (2012) 62-77

Summary

- First measurement of the $p-\phi$ correlation function
- Attractive $p-\phi$ interaction dominated by elastic ٠ contributions in vacuum
- Extraction of $g_{\phi Y} \propto g_{\phi N} \rightarrow$ Relevant for meson exchange between hyperons in Neutron Stars
- PRL Editor's selection ALICE Collab., PRL 127 (2021) 172301

BACKUP

Correlation function model

Original:

femtoscopic contributions C_{femto}(k^{*})

$$C_{tot}(k^*) = \mathcal{N} \cdot \left(MJ_{p-\phi}(k^*) + BL \right) \cdot \left(\lambda_{gen} \cdot C_{gen}(k^*) + \lambda_{flat} \cdot C_{flat}(k^*) \right) + \lambda_{p-KK} \cdot C_{p-KK,exp}(k^*)$$

Non-femtoscopic background C_{non-femto}(k*)

Combinatorial p—KK background (derivation data driven, includes non-femtoscopic contribution)

$$C_{p-KK,exp}(k^*) = \mathcal{N} \cdot \left(MJ_{p-\phi}(k^*) + BL \right) \cdot C_{p-KK}(k^*)$$

Lednicky-Lyuboshits approach

$$C(k^*) = \sum_{S} \rho_S \left[\frac{1}{2} \left| \frac{f(k^*)}{r_0} \right|^2 \left(1 - \frac{d_0}{2\sqrt{\pi}r_0} \right) + \frac{2\Re f(k^*)}{\sqrt{\pi}r_0} F_1(2k^*r_0) - \frac{\Im f(k^*)}{r_0} F_2(2k^*r_0) \right]$$

Analytical approach to model CF for strong final state interaction within effective range expansion R. Lednicky and V.L. Lyuboshits, *Sov. J. Nucl. Phys.* 53 (1982) 770

• isotropic source of Gaussian profile $S(r^*)$

• scattering amplitude:
$$f(k^*) = \left(\frac{1}{f_0} + \frac{1}{2}d_0k^{*2} - ik^*\right)^{-1}$$

- Effective range d_0 and scattering length f_0
- spin averaged scattering parameters

Coupled channels

- CF tool to study coupled channels (CC) J. Haidenbauer, Nucl.Phys.A 981 (2019) 1 Y. Kamiya et al., Phys.Rev.Lett. 124 (2020) 13
- Above-threshold channels (m_{channel} > m_{pair}) can lead to cusp structure at channel opening k* in p-φ system e.g. K*-Λ, K*-Σ

ПΠ

Coupled channels

- CF tool to study coupled channels (CC) J. Haidenbauer, Nucl.Phys.A 981 (2019) 1 Y. Kamiya et al., Phys.Rev.Lett. 124 (2020) 13
- Above-threshold channels (m_{channel} > m_{pair}) can lead to cusp structure at channel opening k* in p-φ system e.g. K*-Λ, K*-Σ
- Below-threshold channels effectively increase CF e.g. K-Λ, K-Σ, K-Λ (1405)

- Gaussian-type potential with real parameters Phys. Rev. Lett. 98 (2007) 042501
 - $V(r) = -V_{eff} \cdot e^{-\mu r^2}$
- CF obtained numerically using CATS framework D.L. Mihaylov et al, *Eur. Phys. J.* C78 (2018) no.5, 394

 V_{eff} = 2.5±0.9(stat.) ± 1.4(syst.) MeV μ = 0.14 ± 0.06(stat.) ± 0.09(syst.) fm-2

- Very shallow potential depth
- Much shallower than Lattice QCD potential for N–J/ψ strong interaction (indirect comparison)
 T. Sugiura, Y. Ikeda, and N. Ishii, *PoS* LATTICE2018 (2019) 093

C(k*) 1.5 ALICE pp √s = 13 TeV High-mult. (0 - 0.17% INEL > 0)1.4 $0.7 < S_{T} < 1.0$ 0 1.3 Gaussian-type Potential 1.2 1.1 50 300 350 400 0 100 200 250 150 k^* (MeV/c)

• Particle emission from Gaussian core source

- Particle emission from Gaussian core source
- Core radius effectively increased by short-lived strongly decaying **resonances** ($c\tau \approx r_{core}$)

- Particle emission from Gaussian core source
- Core radius effectively increased by short-lived strongly decaying **resonances** ($c\tau \approx r_{core}$)
- Universal source model constrained from pp pairs (well-known interaction) ALICE Collab., *Physics Letters B*, **811** (2020) 135849

- Particle emission from Gaussian core source
- Core radius effectively increased by short-lived strongly decaying **resonances** ($c\tau \approx r_{core}$)
- Universal source model constrained from pp pairs (well-known interaction) ALICE Collab., *Physics Letters B*, **811** (2020) 135849
- Gaussian core source scales with $\langle m_T \rangle$
 - $r_{\rm core} = 0.98 \pm 0.04 \, {\rm fm}$
- Effects from short-lived resonances
 - no relevant contribution from strongly decaying resonances feeding to the $\boldsymbol{\varphi}$
 - Sizable amount of protons from decay of e.g. Delta resonances (only ~33% primordial protons)
 - effective Gaussian size: r_{eff} = 1.08 ± 0.05 fm

