JT Gravity, Matrix Models, and Applications

A Master Thesis Presentation by Dominik Bell

Supervisor: Prof. Dr. Dieter Lüst
Supervisor: Dr. Ioannis Lavdas

Outline

- JT Gravity \& Schwarzian Theory
- Matrix Models
- Constructing (S)JT from Matrix Models (Johnson '19, '20)
- A New Family of Matrix Models
- Solving the String Equation
- Results
- Summary \& Outlook

Motivation

Jackiw-Teitelboim (JT) Gravity

action:

$$
S=S_{0} \chi(\mathcal{M})+\int_{\mathcal{M}} d^{2} \times \sqrt{g} \phi(R-\Lambda)+2 \int_{\partial \mathcal{M}} d \tau \sqrt{h} \phi_{b} K
$$

with e.o.m.s

$$
R=-2
$$

$$
g_{\mu \nu}\left(\square+\frac{\Lambda}{2}\right) \phi-\nabla_{\mu} \nabla_{\nu} \phi=0
$$

is $A d S_{2}$ (also locally). Counting topologies: $\hbar=e^{-S_{0}}$

Jackiw-Teitelboim (JT) Gravity

action:

$$
S=S_{0} \chi(\mathcal{M})+\int_{\mathcal{M}} d^{2} x \sqrt{g} \phi(R-\Lambda)+2 \int_{\partial \mathcal{M}} d \tau \sqrt{h} \phi_{b} K
$$

with e.o.m.s

$$
R=-2 \quad g_{\mu \nu}\left(\square+\frac{\Lambda}{2}\right) \phi-\nabla_{\mu} \nabla_{\nu} \phi=0
$$

is $A d S_{2}$ (also locally). Counting topologies: $\hbar=e^{-S_{0}}$

Considering $N A d S_{2}$ boundaries one arrives at the Schwarzian action.

The Schwarzian Theory

 action:$$
S=-C \int d t\{F(t), t\} \quad\{F(t), t\}=\frac{F^{\prime \prime \prime}}{F^{\prime}}-\frac{3}{2}\left(\frac{F^{\prime \prime}}{F^{\prime}}\right)^{2}
$$

The Schwarzian Theory

action:

$$
S=-C \int d t\{F(t), t\} \quad\{F(t), t\}=\frac{F^{\prime \prime \prime}}{F^{\prime}}-\frac{3}{2}\left(\frac{F^{\prime \prime}}{F^{\prime}}\right)^{2}
$$

$Z(g)$ of each topology is one-loop exact (Stanford, Witten '17), e.g.

$$
Z_{0}(\beta)=\frac{\#}{g^{3}} \exp \left(\frac{\pi}{g^{2}}\right) \sim \int_{0}^{\infty} \underbrace{\sinh (2 \pi \sqrt{E})}_{\equiv \rho_{0}(E)} e^{-\beta E} \quad \text { with } \beta \sim g^{2}
$$

The Schwarzian Theory

 action:$$
S=-C \int d t\{F(t), t\} \quad\{F(t), t\}=\frac{F^{\prime \prime \prime}}{F^{\prime}}-\frac{3}{2}\left(\frac{F^{\prime \prime}}{F^{\prime}}\right)^{2}
$$

$Z(g)$ of each topology is one-loop exact (Stanford, Witten '17), e.g.

$$
Z_{0}(\beta)=\frac{\#}{g^{3}} \exp \left(\frac{\pi}{g^{2}}\right) \sim \int_{0}^{\infty} \underbrace{\sinh (2 \pi \sqrt{E})}_{\equiv \rho_{0}(E)} e^{-\beta E} \quad \text { with } \beta \sim g^{2}
$$

Topological expansion is dual to $\frac{1}{N}$-expansion of random matrices (Saad, Shenker, Stanford '19)

Spectral Form Factor

Figure: SFF for JT Gravity with $\Gamma=0$ and $\beta=50$

Spectral Form Factor

Figure: SFF for JT Gravity with $\Gamma=0$ and $\beta=50$

Matrix Models

Matrix Models describe triangulations of 2-dim. surfaces. The dynamical degrees of freedom are random $N \times N$ matrices M.

$$
Z=\int \mathcal{D} M \exp (-N \operatorname{Tr}[V(M)])
$$

Smooth physics (\Rightarrow sum over topologies) appear in the DSL $(N \rightarrow \infty)$.

Matrix Models

Matrix Models describe triangulations of 2-dim. surfaces. The dynamical degrees of freedom are random $N \times N$ matrices M.

$$
Z=\int \mathcal{D} M \exp (-N \operatorname{Tr}[V(M)])
$$

Smooth physics (\Rightarrow sum over topologies) appear in the DSL $(N \rightarrow \infty)$.
Partition function of a triangulation is loop of length β (Banks et al. '90):

$$
\begin{aligned}
& Z(\beta)=\int_{-\infty}^{\mu} d x\langle x| e^{-\beta \mathcal{H}}|x\rangle=\int_{0}^{\infty} d E \rho(E) e^{-\beta E} \\
& \rho(E)=\int_{-\infty}^{\mu} d x \psi(x, E) \psi^{*}(x, E)
\end{aligned}
$$

Lax equation:

$$
\mathcal{H} \psi(x, E)=\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+u(x)\right] \psi(x, E)=E \psi
$$

and $u(x)$ satisfies the string equation.

The String Equation

The string equation:

$$
u \mathcal{R}^{2}-\frac{\hbar^{2}}{2} \mathcal{R} \mathcal{R}^{\prime \prime}+\frac{\hbar^{4}}{4}\left(\mathcal{R}^{\prime}\right)^{2}=\hbar^{2} \Gamma^{2} \quad \mathcal{R}=R_{k}[u(x)]+x
$$

with $R_{k}[u(x)]=u^{k}(x)+\ldots+\hbar^{2 k-2} u^{(2 k-2)}(x)$ the Gelfand-Dikii polynomials.

The String Equation

The string equation:

$$
u \mathcal{R}^{2}-\frac{\hbar^{2}}{2} \mathcal{R} \mathcal{R}^{\prime \prime}+\frac{\hbar^{4}}{4}\left(\mathcal{R}^{\prime}\right)^{2}=\hbar^{2} \Gamma^{2} \quad \mathcal{R}=R_{k}[u(x)]+x
$$

with $R_{k}[u(x)]=u^{k}(x)+\ldots+\hbar^{2 k-2} u^{(2 k-2)}(x)$ the Gelfand-Dikii polynomials.

Named after the ($p=2, q=2 k-1$) class of minimal string theories which consist of two components:

- a (p, q) minimal CFT with central charge $c=1-\frac{6(p-q)^{2}}{p q}<1$
- Liouville theory

(S)JT Gravity from Matrix Models (I)

String equation at classical level $(\hbar=0)$:

$$
u(x) \mathcal{R}^{2}=0 \quad u(x)= \begin{cases}(-x)^{\frac{1}{k}}+\ldots & x<0 \\ 0+\ldots & x>0\end{cases}
$$

(S)JT Gravity from Matrix Models (I)

String equation at classical level $(\hbar=0)$:

$$
u(x) \mathcal{R}^{2}=0 \quad u(x)= \begin{cases}(-x)^{\frac{1}{k}}+\ldots & x<0 \\ 0+\ldots & x>0\end{cases}
$$

"Couple" minimal strings together via potential:

$$
-x=\sum_{k=1}^{\infty} t_{k} u_{0}^{k} \quad f\left(u_{0}\right)=-\frac{\partial x}{\partial u_{0}}=\sum_{k=0}^{\infty} k t_{k} u_{0}^{k-1}
$$

(S)JT Gravity from Matrix Models (I)

String equation at classical level $(\hbar=0)$:

$$
u(x) \mathcal{R}^{2}=0 \quad u(x)= \begin{cases}(-x)^{\frac{1}{k}}+\ldots & x<0 \\ 0+\ldots & x>0\end{cases}
$$

"Couple" minimal strings together via potential:

$$
-x=\sum_{k=1}^{\infty} t_{k} u_{0}^{k} \quad f\left(u_{0}\right)=-\frac{\partial x}{\partial u_{0}}=\sum_{k=0}^{\infty} k t_{k} u_{0}^{k-1}
$$

Then the spectral density

$$
\rho_{0}(E)=\frac{1}{2 \pi \hbar} \int_{0}^{E} d u_{0} \sum_{k=0}^{\infty} \frac{k t_{k} u_{0}^{k-1}}{\sqrt{E-u_{0}}}=\frac{1}{2 \pi \hbar} \int_{0}^{E} d u_{0} \frac{f\left(u_{0}\right)}{\sqrt{E-u_{0}}}
$$

(S)JT Gravity from Minimal Strings/Matrix Models (II)

What we have:

	t_{k}	$\rho_{0}(E)$	$f\left(u_{0}\right)$
JT	$\frac{\pi^{2 k-2}}{2 k!(k-1)!}$	$\sim \sinh (2 \pi \sqrt{E})$	$\sim I_{0}\left(2 \pi \sqrt{u_{0}}\right)$
SJT	$\frac{2 \pi^{2 k}}{(k!)^{2}}$	$\sim \frac{1}{\sqrt{E}} \cosh (2 \pi \sqrt{E})$	$\sim \frac{I_{1}\left(2 \pi \sqrt{u_{0}}\right)}{\sqrt{u_{0}}}$

(S)JT Gravity from Minimal Strings/Matrix Models (II)

What we have:

	t_{k}	$\rho_{0}(E)$	$f\left(u_{0}\right)$
JT	$\frac{\pi^{2 k-2}}{2 k!(k-1)!}$	$\sim \sinh (2 \pi \sqrt{E})$	$\sim I_{0}\left(2 \pi \sqrt{u_{0}}\right)$
SJT	$\frac{2 \mu^{2 k}}{(k!)^{2}}$	$\sim \frac{1}{\sqrt{E}} \cosh (2 \pi \sqrt{E})$	$\sim \frac{I_{1}\left(2 \pi \sqrt{\omega_{0}}\right)}{\sqrt{J_{0}}}$

Idea: generalize the kernel $f\left(u_{0}\right)$ (and thus t_{k} and $\left.\rho_{0}(E)\right)$ to

	t_{k}	$\rho_{0}(E)$	$f\left(u_{0}\right)$
n	$\sim \frac{\pi^{2 k+n-2}}{k!(k+n-1)!}$	$\sim \frac{L_{n-\frac{1}{2}}^{(2 \pi \sqrt{E})}}{(\sqrt{E})^{n-\frac{1}{2}}}$	$\sim \frac{I_{n}\left(2 \pi \sqrt{U_{0}}\right)}{\left(\sqrt{U_{0}}\right)^{n}}$

with I_{n} the n-th Bessel function and L_{n} Struve functions.

Solving the String Equation

Solve string equation as BVP; to write boundary conditions, make perturbative ansatz:

$$
u(x)=u_{0}(x)+\hbar u_{1}(x)+\hbar^{2} u_{2}(x)+\ldots
$$

Turning on all t_{k} 's yields infinite order differential equation \Rightarrow truncate t_{k} up to some $k_{\max }=6$.

Results for Potentials

Figure: Comparison of the potentials for JT Gravity and the $n=2$ model for three different values of $\Gamma=0, \frac{1}{2},-\frac{1}{2}$

Matrix Numerov Method

Then numerically solve Schrödinger equation

$$
\mathcal{H} \psi(x)=\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+u(x)\right] \psi(x)=E \psi(x)
$$

with fully quantum potentials to obtain wavefunctions $\psi(x)$

Matrix Numerov Method

Then numerically solve Schrödinger equation

$$
\mathcal{H} \psi(x)=\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+u(x)\right] \psi(x)=E \psi(x)
$$

with fully quantum potentials to obtain wavefunctions $\psi(x)$
\Rightarrow use Matrix Numerov method (Pillai, Goglio, Walker '12)

Results for Spectral Densities

Figure: Comparison of the disk contribution and full spectral densities for JT Gravity and the $n=2$ model for $\Gamma=0$

Spectral Form Factor

Figure: $\log _{10}$ of the temporal shape of the SFF $\langle Z(\beta+i t) Z(\beta-i t)\rangle$ with $\beta=50$ comparing JT Gravity with the $n=2$ model for $\Gamma=0$

Summary \& Outlook

- Discussion of matrix models and JT gravity
- New family of matrix models with interesting features
- Successful implementation and numerical results

Summary \& Outlook

- Discussion of matrix models and JT gravity
- New family of matrix models with interesting features
- Successful implementation and numerical results
- Connection to other Schwarzian theories ($\mathcal{N}=2$ SJT)
- More fundamental insights through MST
- Discussion for more values of n and Γ
- Improve numerical precision (truncation)

Thank you for your attention!

Sachdev-Ye-Kitaev (SYK) Model

ensemble of 1D quantum systems with N Majorana fermions

$$
H_{\mathrm{SYK}, \text { int }}=\sum_{1 \leq i<j<k<l \leq N} J_{i j k l} \psi_{i} \psi_{j} \psi_{k} \psi_{l}
$$

with $J_{i j k l}$ random numbers drawn from a Gaussian distribution.
Single models exhibit chaos at late times

$$
Z(\beta)=\int \mathcal{D} \psi \exp \left[-\int_{0}^{\beta} d \tau\left(\psi_{i} \partial_{\tau} \psi_{i}+J_{i j k l} \psi_{i} \psi_{j} \psi_{k} \psi_{l}\right)\right]
$$

Interesting physics appear in ensemble average \Rightarrow arrive at Schwarzian action for $1 \ll \beta J$

$$
\langle Z(\beta)\rangle_{J}=\int \mathcal{D} J_{i j k l} \exp \left(-\sum_{1 \leq i<j<k<l \leq N} \frac{J_{i j k l}^{2}}{2 \sigma^{2}}\right) Z(\beta)
$$

The Double Scaling Limit (DSL) (I)

Partition function

$$
\begin{aligned}
Z(g) & =\int \mathcal{D} M \exp (-N \operatorname{Tr}[V(M)]) \\
M & =U \wedge U^{-1} \int \prod_{i} d \lambda_{i} \Delta\left(\lambda_{i}\right) \exp \left[-\sum_{i} V\left(\lambda_{i}\right)\right]
\end{aligned}
$$

with $\Delta(\lambda)$ the v.d.M. det. This can be rewritten in terms of orthonormal polynomials $P_{n}\left(\lambda_{i}\right)$ (Zuber et al. '78) which satisfy recursion relation

$$
\lambda P_{n}(\lambda)=P_{n+1}(\lambda)+A_{n} P_{n-1}(\lambda)
$$

Introduce free fermions

$$
\psi_{n}(\lambda)=\frac{1}{\sqrt{h_{n}}} P_{n}(\lambda) \exp \left(-\frac{1}{2} N V(\lambda)\right)
$$

The Double Scaling Limit (DSL) (II)

Second quantization and Fermi sea $|N\rangle$:

$$
\Psi(\lambda)=\sum_{n=0}^{\infty} a_{n} \psi_{n}(\lambda) \quad\left\{a_{n}, a_{m}^{\dagger}\right\}=\delta_{n, m}
$$

$$
a_{n}|N\rangle=0 \quad n \geq N \quad a_{n}^{\dagger}|N\rangle=0 \quad n<N
$$

recursion relation translates to

$$
\lambda \psi_{n}=\sqrt{r_{n+1}} \psi_{n+1}+\sqrt{r_{n}} \psi_{n-1}
$$

Wick's theorem: can compute all amplitudes via 2-pt function

$$
K_{N}\left(\lambda_{1}, \lambda_{2}\right) \equiv\langle N| \Psi^{\dagger}\left(\lambda_{1}\right) \Psi\left(\lambda_{2}\right)|N\rangle \quad \rho(\lambda)=K_{N}(\lambda, \lambda)
$$

spectral density is (in general) multicritical, DSL:

$$
\frac{n}{N} \rightarrow \infty \quad \lambda \rightarrow \lambda_{c} \quad r_{n}[V] \rightarrow r_{c}+\epsilon u(x)
$$

Results for Spectral Densities

Figure: Comparison of the disk contribution and full spectral densities for JT Gravity and the $n=2$ model for $\Gamma=\frac{1}{2}$

Spectral Form Factor

Figure: $\log _{10}$ of the temporal shape of the SFF $\langle Z(\beta+i t) Z(\beta-i t)\rangle$ with $\beta=50$ comparing JT Gravity with the $n=2$ model for $\Gamma=\frac{1}{2}$

