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Jackiw-Teitelboim (JT) Gravity

action:

SzSox(M)—l—/MdZX\/E(p (R—/\)~|—2/(9Md7'\/z¢bK

with e.o.m.s
A
R=-2 gW(EI—i-E)(b—VMVV(ﬁ:O

is AdS, (also locally). Counting topologies: h = e~
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Jackiw-Teitelboim (JT) Gravity

action:
S:SOX(M)+/ d’x \/g ¢ (R—A)~|—2/ dr Vh ¢pK
M oM
with e.o.m.s

A
R= -2 gW(D+§>¢—vaV¢:0

is AdS, (also locally). Counting topologies: h = e~

Considering N AdS; boundaries one arrives at the Schwarzian action.
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The Schwarzian Theory

action:

5= —C/dt (F(e), £}
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The Schwarzian Theory

action:

5=—C/dt {F(t). 2} {F(t)’t}zg_%g)z

Z(g) of each topology is one-loop exact (Stanford, Witten '17), e.g.

Z(B) = ﬁsexp (%) ~ / sinh <27r\/E> e PE with 8 ~ g2
=po(E)
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The Schwarzian Theory

action:

5=—C/dt {F(t). 2} {F(t)’t}zg_%g)z

Z(g) of each topology is one-loop exact (Stanford, Witten '17), e.g.
o
Z(B) = exp ( 7T2> ~ / sinh <27r\/E> e PE with 8 ~ g2
g 0
N——
=po(E)

Topological expansion is dual to %—expansion of random matrices (Saad,
Shenker, Stanford '19)

AT
‘ end is a geodesic
of length b
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Spectral Form Factor
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Figure: SFF for JT Gravity with I =0 and 8 = 50
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Spectral Form Factor
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L e i, Gl

Matrix Models

Matrix Models describe triangulations of 2-dim. surfaces. The dynamical

degrees of freedom are random N x N matrices M.
7= /Dl\/l exp (=N Tr [V(M)])

Smooth physics (= sum over topologies) appear in the DSL (N — o0).
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Matrix Models

Matrix Models describe triangulations of 2-dim. surfaces. The dynamical

degrees of freedom are random N x N matrices M.
z- /DI\/I exp (=N Tr [V(M)])

Smooth physics (= sum over topologies) appear in the DSL (N — o00).
Partition function of a triangulation is loop of length 3 (Banks et al. '90):

zw)z/f«m<ﬂe%”vw:AWdEMEk*ﬁ

ma:/”ww&awwa

—0oQ
Lax equation:

2 a2
H(x, E) = [_;ﬂaaﬂ + u(x)} Y(x,E) = EY

and u(x) satisfies the string equation.
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The String Equation

The string equation:

h2 R4
uR? — —RR" +

5 " (R')2 = 12r R = Ri[u(x)] + x

with Ry [u(x)] = u¥(x) + ... + h?2u(k=2)(x) the Gelfand-Dikii

polynomials.
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The String Equation

The string equation:

K2 h4 2
uR? — RR” (R’) = 12r R = Ri[u(x)] + x
with Ry [u(x)] = u¥(x) + ... + h?2u(k=2)(x) the Gelfand-Dikii
polynomials.

Named after the (p = 2, g = 2k — 1) class of minimal string theories which
consist of two components:

a (p, q) minimal CFT with central charge c =1 — (ppqq) <1

o Liouville theory
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(S)JT Gravity from Matrix Models (1)

String equation at classical level (5 = 0):

x|

(=x)x+... x<0

u(x) R?=0 u(x){
0+... x>0

e s



(S)JT Gravity from Matrix Models (1)

String equation at classical level (5 = 0):

1
—x)k+... x<0
u(x) R?=0 u(x) = (=)
O+... x>0
"Couple” minimal strings together via potential:
_ k _ Y k—1
—X = ; tk g f(uw) = T kz_oktkuo
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(S)JT Gravity from Matrix Models (1)

String equation at classical level (5 = 0):

1
—x)k+... x<0
u(x) R?=0 u(x) = (=)
O+... x>0
"Couple” minimal strings together via potential:
_ k _ Y k—1
—X = ; tk g f(uw) = T kz_oktkuo

Then the spectral density

ktku 1 f(uo)
E)= 0 dug———
po(E) = 27rﬁ/ Z VE — ug = 2nh 0 1o VvVE — ug
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(S)JT Gravity from Minimal Strings/Matrix Models (II)

What we have:

w polE) F(u0)

7.|.2k72

SRI(k—T)! ~ sinh(27VE) ~ Io(2m /T

SIT| %%~ Jzcosh(2nVE)  ~ 2E270)

JT

—~
X
~|
N
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(S)JT Gravity from Minimal Strings/Matrix Models (II)

What we have:

‘ tx po(E) f(UO)
k= .
T | gy ~sinh(rvVE)  ~ lo(2my/io)

2k (27 /uy
SJT (2k!)2 ~ \/LE cosh(2nrVE) ~ %

Idea: generalize the kernel f(up) (and thus tx and po(E)) to

ti po(E) f(uo)

- 71.2l<+n—2 ~ Ln—%(27r\/§) ~ I,,(27r\/u>o)
n KI(k¥n—1)! (VE) (V/uo)”

with /, the n-th Bessel function and L,, Struve functions.
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Solving the String Equation

Solve string equation as BVP; to write boundary conditions, make
perturbative ansatz:

u(x) = uo(x) 4 huy(x) + FPux(x) + ...
Turning on all t;'s yields infinite order differential equation = truncate ty

up to some Kmax = 6.
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Results for Potentials
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Figure: Comparison of the potentials for JT Gravity and the n = 2 model for

three different values of ' = 0, %, —%
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Matrix Numerov Method

Then numerically solve Schrodinger equation

2 2
Ho() = |- 2= 0 0] w(x) = Ev(x)

2mox?

with fully quantum potentials to obtain wavefunctions (x)
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Matrix Numerov Method

Then numerically solve Schrodinger equation

2 2
Ho() = |- 2= 0 0] w(x) = Ev(x)

2mox?

with fully quantum potentials to obtain wavefunctions (x)

= use Matrix Numerov method (Pillai, Goglio, Walker '12)
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Results for Spectral Densities

JT Gravity n=2 model
10 —full solution —full solution
- -disk solution - -disk solution
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Figure: Comparison of the disk contribution and full spectral densities for JT
Gravity and the n =2 model for T =0
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Spectral Form Factor

JT Gravity

n=2 model
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Figure: log, of the temporal shape of the SFF (Z(8 + it)Z(8 — it)) with 8 = 50
comparing JT Gravity with the n = 2 model for [ =0
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Summary & Outlook

@ Discussion of matrix models and JT gravity
@ New family of matrix models with interesting features

@ Successful implementation and numerical results
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Summary & Outlook

@ Discussion of matrix models and JT gravity

@ New family of matrix models with interesting features
@ Successful implementation and numerical results

e Connection to other Schwarzian theories (N =2 SJT)
@ More fundamental insights through MST

@ Discussion for more values of n and I

Improve numerical precision (truncation)
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Thank you for your attention!



Sachdev-Ye-Kitaev (SYK) Model

ensemble of 1D quantum systems with N Majorana fermions

Hovk, it = D Jjwa i ¥ vu

1<i<j<k<I<N

with Jjiy random numbers drawn from a Gaussian distribution.

Single models exhibit chaos at late times
B
Z(B) = /D¢ exp [—/0 dr (Yi0ri + Jijbivjbiby)

Interesting physics appear in ensemble average = arrive at Schwarzian
action for 1 < 8J

2
(2(8)), = / Dha o |~ 3 ;If,kzl 2(8)

1<i<j<k<I<N
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The Double Scaling Limit (DSL) (1)

Partition function

Z(g) = /DM exp (=N Tr[V(M)])

M=UAU~ /H d\i A(N;) exp [— Z V()\;)]

with A(A) the v.d.M. det. This can be rewritten in terms of orthonormal

polynomials P,(\;) (Zuber et al. '78) which satisfy recursion relation

>\Pn()‘) = Pn-i—l()‘) + AnPn—l()‘)

Introduce free fermions
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The Double Scaling Limit (DSL) (II)

Second quantization and Fermi sea |N):

V)= 3 i) (o} = bn
n=0

an|N) =0 n>N al [Ny =0 n<N
recursion relation translates to
A, = LV rn+1wn+1 + \/r_nwn—l

Wick's theorem: can compute all amplitudes via 2-pt function

Kn(A1, A2) = (NWT(A)W(A2)[N) p(A) = Kn(A, A)
spectral density is (in general) multicritical, DSL:
%—)oo A= Ac rn[V] = re + e u(x)
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Results for Spectral Densities

JT Gravity n=2 model
10 —full solution ) —full solution
- -disk solution - -disk solution
4
8
—_ 6 | 3 —_
w w
hst kst
4 -2
2 -1
by,
7z
0 -0
0 0.1 0.2 0.3 0.4 0 0.5 1 1.5

E E

Figure: Comparison of the disk contribution and full spectral densities for JT

Gravity and the n = 2 model for I = §
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Spectral Form Factor

JT Gravity n=2 model
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Figure: log, of the temporal shape of the SFF (Z(8 + it)Z(S — it)) with 5 = 50
comparing JT Gravity with the n = 2 model for ' = %
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