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o Other GFT models viable = "universal’ behavior?
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Symmetries of :
©(91,92,93,94; X) = @(gru1, gaua, gaus, gaua; X), Vu; € SU(2)x

(91,92, 93,94: X) = p(g1h™, g2kt g3h ™!, gsh™ k- X), Vh € SL(2,C)
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o) = 19 exp (/a0 [ ax o(gu;w*(gv;m) 10)

Properties:
e Mean field approximation

(o] ¢(gv; X;8) lo) = a(gv; X; ¢)
= o is an order parameter

e Quantum analogue of homogeneity [Gielen, Oriti, and Sindoni 2014]

e Additional symmetry

(91,92, 93,945 X;6) = o(hgih™ ' hgah ™' hgsh™ ' hgah™ 1 h-X; ¢),

Vh € SL(2,C)

Domain of condensate wavefunction is diffeomorphic to
minisuperspace of homogeneous 3-geometries
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e Evolution like EPRL-like models with o;(¢) <+ 0,(¢):

— Lower bound on (a|V(¢)|o) = Quantum Bounce

(go; X) =B 5(gy; X3 ¢)

— Quantum corrected Friedmann equations

— Same phenomenological implications
e Advantages compared to EPRL-like approach

— No Barbero-Immirzi parameter y [Perez and Rovelli 2006]
— Direct use of SL(2,C)

— Unambiguous GFT formulation

Conjecture: Mircoscopic details, such as simplicity constraints, do
not affect the coarse grained relational evolution

[Dittrich 2021]
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