Multiple Heavy Fermions

Hadronic QCD Axion Models with Multiple New Fermions

Vaisakh Plakkot

IMPRS Recruiting Workshop November 20, 2021

VP & S. Hoof, arXiv:2107.12378 [PRD 104 (2021) 075017]

Multiple Heavy Fermions

The KSVZ Model [Kim '79; Shifman, Vainstein, Zakharov '80]

Standard Model of Elementary Particles

 $\stackrel{[{\rm Wikimedia\ Commons}]}{\rightarrow} \mbox{Uncharged\ under\ U(1)}_{\sf PQ}$

PQ field	
$\Phi \sim (1,1,0)$	
$ ightarrow \Phi = rac{(v_a+ ho_a)}{\sqrt{2}} \mathrm{e}^{ia/v_a}$	

Heavy fermion $Q = Q_L + Q_R \sim (3, 1, 0)$ $\rightarrow \mathcal{L} \supset -(y_Q \overline{Q}_L Q_R \Phi)$ $\rightarrow m_Q = y_Q v_a / \sqrt{2}$

Multiple Heavy Fermions

Axion Mass and Interactions

Axion-photon coupling

$$g_{a\gamma\gamma}=rac{lpha_{ ext{em}}}{2\pi f_a}\left(rac{ extsf{\textit{E}}}{ extsf{\textit{N}}}-1.92(4)
ight)$$

Axion-electron coupling

$$g_{ae} = \frac{3\alpha_{em}^2}{2\pi} \frac{m_e}{f_a} \left[\frac{E}{N} \ln \left(\frac{f_a}{m_e} \right) - 1.92 \ln \left(\frac{\Lambda}{m_e} \right) \right]$$

Axion mass $m_a\simeq 5.69 \left(rac{10^{12}\,{ m GeV}}{f_a} ight) \mu { m eV}$

Multiple Heavy Fermions

Selection Criteria [Di Luzio, Mescia, Nardi '17]

• A window for preferred models – selection criteria for \mathcal{Q} :

Dark Matter Constraints

Constrain $f_a \lesssim 5 imes 10^{11} \, {
m GeV} \Rightarrow$ constraint on $m_{\cal Q} = y_{_Q} f_a N_{_{\rm DW}} / \sqrt{2}$

$\mathcal Q$ Lifetimes

Q to decay to SM with $\tau_Q \leq 10^{-2} \,\mathrm{s}$

ightarrow Restrict $d\left(\mathcal{O}
ight)\leq$ 5 for post-inflationary $\mathrm{U}(1)_{\mathsf{PQ}}$ breaking scenario

Landau Poles

Avoid LPs below $10^{18}\,{\rm GeV},$ i.e. only representations with $\Lambda_{LP}>10^{18}\,{\rm GeV}$ allowed

• 15 Q representations fulfil the criteria $(m_Q = 5 \times 10^{11} \text{ GeV})$

The Phenomenological Window $\circ \bullet$

Multiple Heavy Fermions

The $N_Q = 1$ Window

Multiple Heavy Fermions

Adding More Fermions

For given m_Q and LP threshold, possible to find maximum N_Q allowed:

Selection Criteria

Dark Matter Constraints

Constrain
$$f_a \lesssim 5 imes 10^{11}\,{
m GeV}$$
 \Rightarrow constraint on $m_{\cal Q} = y_{_{\cal Q}} f_a N_{_{
m DW}}/\sqrt{2}$

\mathcal{Q} Lifetimes

 ${\cal Q}$ to decay to SM with $au_{{\cal Q}} \leq 10^{-2}\,{
m s}$

ightarrow Restrict $d\left(\mathcal{O}
ight)\leq$ 5 for post-inflationary $\mathrm{U}(1)_{\mathsf{PQ}}$ breaking scenario

Landau Poles

Avoid LPs below $10^{18}\,{\rm GeV},$ i.e. only representations with $\Lambda_{LP}>10^{18}\,{\rm GeV}$ allowed

$N \neq 0$

The model should provide a solution to the Strong CP problem.

Multiple Heavy Fermions

Anomaly Ratio Distributions

- 5,753,012 non-equivalent models $\rightarrow \approx 1.42\%$ models photophobic (|E/N - 1.92| < 0.04)
- 820 different E/N values \rightarrow 11 within 1 σ of 1.92(4)
- Largest $|g_{a\gamma\gamma}|$: $N_Q = 8$ model with E/N = -166/3

Multiple Heavy Fermions

Hadronic Axion Bands

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><10</td>

Multiple Heavy Fermions

$N_{\text{\tiny DW}} = 1$ Models

< □ > < □ > < □ > < Ξ > < Ξ > Ξ = りへで 10/14

Multiple Heavy Fermions 0000000

Different $m_{\mathcal{O}}$, Correction for f_a

Multiple Heavy Fermions

Axion-electron Coupling

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ Ξ = の Q @ 12/14

What Next?

- Non-universal coupling of Q to Φ , i.e. distinguishable Qs with different m_Q
- Non-universal PQ field multi-axion models, essentially different m_Q for each Q
- Enhanced coupling, e.g. via clockwork mechanism [Farina, Pappadopulo, Rompineve, Tesi '17]
- \bullet A catalogue of DFSZ extensions with generation-dependent ${\rm U}(1)_{PQ}$ charges and nine Higgs doublets

Summary

- Hadronic axion models = SM + PQ scalar + heavy chiral fermion(s)
- \bullet Extend the hadronic model by allowing multiple ${\cal Q}$ in different representations
- Selection criteria to restrict the models to a preferred window $\Rightarrow N_Q \leq 28 \ (m_Q = 5 \times 10^{11} \, {\rm GeV}, \, \Lambda_{LP} > 10^{18} \, {\rm GeV}) \rightarrow \text{finite number of models}$
- 820 different *E*/*N* values
- Statistical interpretation of the distributions allows to determine density of models in parameter space; central 95% region of $|E/N 1.92(4)| \rightarrow [0.06, 17.30]$
- Models with $N_{DW} = 1 trivially$ solve the DW problem; none photophobic

Weighting the Models

Additive Subset

Additive Subset

$N_{\text{DW}} = 1$ Anomaly Ratio Distribution

Effect of Varying m_Q

$m_{\mathcal{Q}}$ (GeV)	$\max(N_Q)$	$\# {\rm models}$	$\widehat{E/N}$	$\overline{E/N}$	$\mathrm{med}(E/N)$	photophobic	95% CR
10^{7}	15	29,926	-94/3	1.51	1.58	1.15%	[0.06, 14.76]
$5\cdot 10^7$	16	46,334	-94/3	1.50	1.56	1.30%	[0.06, 13.29]
10^{8}	17	$65,\!904$	-94/3	1.45	1.50	1.25%	[0.06, 14.75]
$5\cdot 10^8$	18	$124,\!523$	-100/3	1.52	1.67	1.52%	[0.06, 14.76]
10^{9}	19	$177,\!836$	-112/3	1.44	1.54	1.33%	[0.06, 15.27]
$5\cdot 10^9$	21	$330,\!867$	-118/3	1.42	1.41	1.36%	[0.06, 15.25]
10^{10}	22	$494,\!428$	-130/3	1.45	1.56	1.37%	[0.06, 16.73]
$5\cdot 10^{10}$	24	$1,\!140,\!142$	-136/3	1.38	1.50	1.44%	[0.06, 14.68]
10^{11}	25	$1,\!950,\!978$	-142/3	1.42	1.52	1.40%	[0.06, 17.24]
$5\cdot 10^{11}$	28	5,753,017	-166/3	1.44	1.52	1.42%	[0.06, 17.30]
10^{12}	29	$9,\!214,\!494$	-178/3	1.40	1.47	1.42%	[0.06, 18.74]

Effect of Varying the LP Threshold

	$\Lambda_{\rm LP}>10^{16}{\rm GeV}$	$10^{17}{\rm GeV}$	$10^{18}{ m GeV}$	$10^{19}{ m GeV}$
$m_{\mathcal{Q}} = 10^7 \mathrm{GeV}$	[0.06, 16.74]	[0.06, 14.75]	[0.06, 14.76]	[0.06, 11.26]
$10^8{ m GeV}$	[0.06, 17.25]	[0.06, 15.25]	[0.06, 14.75]	[0.06, 12.78]
$10^9{ m GeV}$	[0.06, 17.23]	[0.06, 15.30]	[0.06, 15.27]	[0.06, 12.77]
$10^{10}{ m GeV}$	[0.07, 19.27]	[0.06, 18.22]	[0.06, 16.73]	[0.06, 13.32]

Effect of Varying the LP Threshold

\mathcal{Q} Lifetime

4 ロ ト 4 日 ト 4 三 ト 4 三 ト 三 三 の 4 で 6/8

Landau Poles

$$\frac{\mathrm{d}}{\mathrm{dt}}\alpha_i^{-1} = -a_i - \frac{b_{ij}}{4\pi}\alpha_j$$

$$\begin{aligned} a_{i} &= -\frac{11}{3} C_{2}(G_{i}) + \frac{4}{3} \sum_{F} \kappa T(F_{i}) + \frac{1}{3} \sum_{S} \eta T(S_{i}) \\ b_{ij} &= \left[-\frac{34}{3} \left(C_{2}(G_{i}) \right)^{2} + \sum_{F} \left(4C_{2}(F_{i}) + \frac{20}{3}C_{2}(G_{i}) \right) \kappa T(F_{i}) + \sum_{S} \left(4C_{2}(S_{i}) + \frac{2}{3}C_{2}(G_{i}) \right) \right. \\ &\left. \cdot \eta T(S_{i}) \right] \delta_{ij} + 4 \left(1 - \delta_{ij} \right) \left[\sum_{F} \kappa C_{2}(F_{j}) T(F_{i}) + \sum_{S} \eta C_{2}(S_{j}) T(S_{i}) \right] \end{aligned}$$

;

Landau Poles

Landau Poles

The Allowed Qs [Di Luzio, Mescia, Nardi '17]

R_Q	\mathcal{O}_{Qq}	$\Lambda^{R_Q}_{LP}[{ m GeV}]$	E/N	$N_{\rm DW}$
$R_1:(3,1,-\frac{1}{3})$	$\overline{Q}_L d_R$	$9.3 \cdot 10^{38}(g_1)$	2/3	1
$R_2:(3,1,+\frac{2}{3})$	$\overline{Q}_L u_R$	$5.4 \cdot 10^{34}(g_1)$	8/3	1
$R_3:(3,2,+\frac{1}{6})$	$\overline{Q}_R q_L$	$6.5 \cdot 10^{39}(g_1)$	5/3	2
$R_4:(3,2,-rac{5}{6})$	$\overline{Q}_L d_R H^\dagger$	$4.3 \cdot 10^{27}(g_1)$	17/3	2
$R_5:(3,2,+\frac{7}{6})$	$\overline{Q}_L u_R H$	$5.6 \cdot 10^{22}(g_1)$	29/3	2
$R_6: (3, 3, -\frac{1}{3})$	$\overline{Q}_R q_L H^\dagger$	$5.1 \cdot 10^{30}(g_2)$	14/3	3
$R_7:(3,3,+\frac{2}{3})$	$\overline{Q}_R q_L H$	$6.6 \cdot 10^{27}(g_2)$	20/3	3
$R_8:(3,3,-\frac{4}{3})$	$\overline{Q}_L d_R H^{\dagger 2}$	$3.5 \cdot 10^{18}(g_1)$	44/3	3
R_9 : $(\overline{6}, 1, -\frac{1}{3})$	$\overline{Q}_L \sigma d_R \cdot G$	$2.3 \cdot 10^{37}(g_1)$	4/15	5
$R_{10}:(\overline{6},1,+\frac{2}{3})$	$\overline{Q}_L \sigma u_R \cdot G$	$5.1 \cdot 10^{30}(g_1)$	16/15	5
$R_{11}: (\overline{6}, 2, +\frac{1}{6})$	$\overline{Q}_R \sigma q_L \cdot G$	$7.3 \cdot 10^{38}(g_1)$	2/3	10
R_{12} : (8, 1, -1)	$\overline{Q}_L \sigma e_R \cdot G$	$7.6 \cdot 10^{22}(g_1)$	8/3	6
$R_{13}: (8, 2, -\frac{1}{2})$	$\overline{Q}_R \sigma \ell_L \cdot G$	$6.7 \cdot 10^{27}(g_1)$	4/3	12
$R_{14}:(15,1,-\frac{1}{3})$	$\overline{Q}_L \sigma d_R \cdot G$	$8.3 \cdot 10^{21}(g_3)$	1/6	20
$R_{15}:(15,1,+\frac{2}{3})$	$\overline{Q}_L \sigma u_R \cdot G$	$7.6 \cdot 10^{21}(g_3)$	2/3	20