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Introduction

A Multi-Higgs doublet model consists of an extension of the Standard Model where one
considers additional scalar doublets. There is no known restriction to the number of
scalars one can add.

These models intend to address problems such as Baryogenesis and Dark Matter. Here,
we discuss two model building issues one may encounter and explore these models in the
Dark matter context.
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NHDM and Stability Conditions

The scalar potential for a Higgs Model with N scalar doublets (NHDM) takes the form:

VNHDM = Yij

(
Φ†
iΦj

)
+ Zij,kl

(
Φ†
iΦj

)(
Φ†
kΦl

)

The first step to perform when studying a NHDM is to find the necessary and sufficient
conditions for the potential to be bounded from below (BFB).

However, with increasing number of scalars this task becomes very challenging.
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A4-symmetric potential

VA4 = −M0√
3
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Defining r0 = (ϕ†
1ϕ1 + ϕ†

2ϕ2 + ϕ†
3ϕ3)/

√
3 and expressing the potential as:

V = −M0r0 + r20v4 , where v4 = Λ0 + Λ1x+ Λ2y + Λ3z + Λ4t

The variables (x, y, z, t) define the orbit space (Γ) of the theory.
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Geometric Minimization: Rephasing invariant potential

ρ

z

11/4

1/4

1
A

B

For the rephasing invariant potential (Λ4 = 0
and Λ1 = Λ2):

v4 = Λ0 + Λ1ρ+ Λ3z , ρ ≡ x+ y

v4 = Λ0 − n⃗ · x⃗ , n⃗ ≡ −(Λ1,Λ3)

Vmin = − M2
0

4v4,min

The BFB conditions are obtained by making v4 ≥ 0 in Γ:

Λ0 + Λ3 ≥ 0 , Λ0 + Λ1 ≥ 0 , Λ0 +
Λ3

4
≥ 0 , Λ0 +

Λ1

4
≥ 0

All the literature we found on A4-symmetry listed incomplete or incorrect BFB conditions.
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Soft Symmetry Breaking

ρ

z

For the case of exact symmetry and working in a neutral minimum, if the orbit space is
convex, and all the Higgs masses squared positive, then the neutral minimum is
automatically a global minimum.

When adding soft symmetry breaking terms, the above assertion is not necessarily true.
Then, we must assure the potential is bounded in the charge breaking directions as well.
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S4 BFB conditions

xz

y

A B

D C

Neutral directions:

Λ0 + Λ3 ≥ 0

Λ0 + Λ1 ≥ 0

Λ0 +
Λ1 + 3Λ2

4
≥ 0

Λ0 +
Λ3 + 3Λ2

4
≥ 0

Charge breaking directions:

Λ0 +
Λ1

4
≥ 0 , Λ0 +

Λ1 + 3Λ2

16
≥ 0 , (and Λ1 → Λ3)

Λ0 +
Λ1Λ2

Λ2 + 3Λ1
≥ 0 if Λ1 > 0 and Λ1 > |Λ2| (and Λ1 → Λ3)
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Conjecture: exact A4 BFB conditions

Assuming the orbit space of the A4 potential to be convex we conjecture that the BFB
conditions for the exact symmetry and in a neutral global minimum are:

Λ0 + Λ3 ≥ 0 , Λ0 + Λ1 ≥ 0 , Λ0 +
Λ1 + 3Λ2 −

√
3|Λ4|

4
≥ 0 ,

Λ0 +
Λ3

4
+

3

8

(
Λ1 + Λ2 −

√
(Λ1 − Λ2)2 + Λ2

4

)
≥ 0

For further details of this work check Igor P. Ivanov, FV: JHEP 11 (2020), 104.

This conjecture was later proved true in arXiv:2104.11428.
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Decoupling

A decoupling limit happens when the additional scalars are sufficiently massive that the
interactions with the remaining light scalars are negligible.

The couplings of the h125 to gauge bosons and the heaviest charged fermions are known to
coincide with couplings expected in the SM, with errors of order 20% or better. This
feature is easy to explain in models which have a so-called decoupling limit.
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The 2HDM with Z2 symmetry

The symmetry group is represented by:

ϕ1 → ϕ1, ϕ2 → −ϕ2
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The 2HDM with Z2 symmetry

The mass matrix for the charged scalars when the VEV is (v, 0), is:

M2
± =

(
0 0

0 m2
22 +

λ3v2

2

)

The mass matrix for the charged scalars when the VEV is (v1, v2), is:

M2
± =

(
−1

2 (λ4 + λ5) v
2
2

1
2 (λ4 + λ5) v1v2

1
2 (λ4 + λ5) v1v2 −1

2 (λ4 + λ5) v
2
1

)
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Theorem

The vev (v, 0) conserves the symmetry of the potential, and has decoupling. The vev
(v1, v2) breaks the symmetry of the potential and has no decoupling limit.

• Faro, Romão and Silva proved that this property holds for all possible 2HDM’s.

• Using the same approach as before we proved it also holds for all 3HDM’s.

Theorem: A NHDM has a decoupling limit if and only if the vacuum conserves the
symmetry of the potential.

The proof of this theorem and its interesting consequences can be found in Sergio Carrolo,
Jorge C. Romão, João P. Silva, FV: Phys.Rev.D 103 (2021) 7, 075026.
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Inert Doublet Model

ϕ1 =

(
G+

1√
2

(
v + h+ iG0

) ) , ϕ2 =

(
H+

1√
2
(H + iA)

)

In this model mH < mA,mH± . Then, H is the dark matter candidate.

The Inert Doublet Model is a 2HDM with a Z2-symmetry. This symmetry forbids Yukawa
interactions between the second doublet and the fermions, rendering it a good dark matter
candidate.
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Scan and Results

We performed a scan of the variable space (m2
H , m2

A, m
2
H± , λ2 and λ345 = λ3 + λ4 + λ5)

and then tested each point with the existing theoretical and experimental constraints.

Figure: Relic density as a function of the dark
matter mass.

Figure: Coupling parameter as a function of the
dark matter mass.
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Questions?
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