

STANDARD MODEL MEASUREMENTS AT THE PRECISION FRONTIER AT THE LHC

WORKSHOP ON TOOLS FOR HIGH PRECISION LHC SIMULATIONS

OCTOBER **31**st, 2022

SIMONE AMOROSO (DESY)

STATUS OF THE LARGE HADRON COLLIDER

Reliable operations at 6.8 TeV beams and double the design luminosity

THE LHC: AN "EVERYTHING" FACTORY

Particle	Produced in 139	9 fb ⁻¹ at √s = 13 TeV
Higgs boson	7.7 millions	
Top quark	275 millions	
Single top quark	50 millions	
Z boson	2.8 billions	290 millions leptonic
W boson	12 billions	3.7 billions leptonic
Bottom quark	~40 trillions	

From A. Hoecker @ EPS 2019

STANDARD MODEL AT THE LHC: THE BEGINNINGS

Standard Model Production Cross Section Measurements

Discovery of the Higgs

Precision measurements of QCD and EW processes

Exploration of BSM physics via direct and indirect searches

STANDARD MODEL AT THE LHC: NOW

Standard Model Production Cross Section Measurements

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-009/

Status: February 2022

Precision measurements of Higgs and Standard Model processes

Observation of very rare SM processes

Direct BSM searches

Indirect BSM searches through precision measurements

STANDARD MODEL AT THE LHC: NOW

Standard Model Production Cross Section Measurements

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-009/

Status: February 2022

Precision measurements of Higgs and Standard Model processes

Observation of very rare SM processes

Direct BSM searches

Indirect BSM searches through precision measurements

PRECISION SM MEASUREMENTS AT COLLIDERS

Fermions and boson interactions and self-interactions

Quantum corrections to masses and couplings

From J. Kretzschmar

Display of a two jet event in CMS

CMS Experiment at the LHC, CERN Data recorded: 2016-Sep-27 14:40:45.336640 GMT Run / Event / LS: 281707 / 1353407816 / 851

HADRONIC JET PRODUCTION

Hadronic jet

Hadronic jet

INCLUSIVE JETS AND $\alpha_S(m_Z)$

New 13 TeV CMS measurement *

- Joint determination of the proton PDFs and $\alpha_S(m_Z)$ using the CMS jet and HERA2 DIS data
- Avoid circularity: jets -> gluon PDF, jets -> $\alpha_S(m_Z)$

Data statistics $\alpha_{\rm S}(m_{\rm Z}) = 0.1170 \pm 0.0014 ({\rm fit}) \pm 0.0007 ({\rm model})$ ± 0.0008 (scale) ± 0.0001 (parametrisation)

gluon fraction x of the proton momentum

Most precise $\alpha_S(m_Z)$ from hadron collider experiment, in agreement with world average

Parametric uncertainties

PDF functional form

Event shapes and running of the strong-coupling

ATLAS measurement of the strong coupling from Energy-Energy Correlations in jet events

$$\frac{1}{N}\sum_{A=1}^{N}\sum_{ij}\frac{E_{\mathrm{T}i}^{A}E_{\mathrm{T}j}^{A}}{\left(\sum_{k}E_{\mathrm{T}k}^{A}\right)^{2}}\delta(\cos\phi-\cos\phi_{ij}),$$

NLO fixed-order predictions are used to get $\alpha_{\rm s}(m_Z) = 0.1196 \pm 0.0004 \text{ (exp.)} ^{+0.0072}_{-0.0105} \text{ (theo.)}$

- Test the running up to highest scales
- But is the scale used in the predictions used appropriate?

PHOTON AND DIPHOTON PRODUCTION

* Testing QCD higher orders and subtleties with modelling of isolation

W AND Z BOSONS

Event 506568594 Run 182153 Sun, 21 Aug 2016 01:30:39

Display of an LHCb $W \rightarrow \mu \nu$ candidate event

Muon candidate

PRECISION ELECTROWEAK MEASUREMENTS

Powerful way to access physics at very high energies

Parameter Measureme		EW fit		
m _н [GeV]	125.1±0.2	99.5±2		
mt [GeV]	172.47±0.68	175.2±2		
mw [GeV]	80.366±0.019	80.354±0		
$sin^2 heta^{I}_{eff}$	0.23152±0.00016	0.23153±0.		

2.4

.007

00006

Sensitivity to BSM primarily driven by the precision of direct $m_{W,}$ sin $2\theta_{W}$ measurement

13

R. Kogler@ICHEP22

Drell-Yan cross-section can be decomposed into 9 harmonic × polynomials $\mathrm{d}\sigma$

 $dp_T^{\ell\ell} dy^{\ell\ell} dm^{\ell\ell} d\cos\theta$

- Related to $\sin^2\theta_W$ by radiative corrections: $\sin^2\theta_{\text{eff}} = \sin^2\theta_W$ K[†](s,t)
- Directly related to the forward-backward asymmetry;

SIN² θ_{W}

$$\frac{1}{\theta \, \mathrm{d}\phi} = \frac{3}{16\pi} \frac{\mathrm{d}\sigma^{U+L}}{\mathrm{d}p_{\mathrm{T}}^{\ell\ell} \, \mathrm{d}y^{\ell\ell} \, \mathrm{d}m^{\ell\ell}} \\ \left\{ (1+\cos^2\theta) + \frac{1}{2} \, A_0(1-3\cos^2\theta) + A_1 \, \sin 2\theta \, \cos\phi \right. \\ \left. + \frac{1}{2} \, A_2 \, \sin^2\theta \, \cos 2\phi + A_3 \, \sin\theta \, \cos\phi + A_4 \, \cos\theta \right. \\ \left. + A_5 \, \sin^2\theta \, \sin 2\phi + A_6 \, \sin 2\theta \, \sin\phi + A_7 \, \sin\theta \, \sin\phi \right\} \\ \left. + \operatorname{rectioned} \left. \operatorname{d}p_{\mathrm{T}}^{\mathrm{ff}} - \operatorname{d}p_{\mathrm{T}}^{\mathrm{ff}} \right\} \right\}$$

in full phase-space $A_{FB} = 3/8$ A4 (but EW corrections violate this)

MULTI-DIFFERENTIAL Z->LL

- \Rightarrow A_{FB}/A₄ is a parton-level effect that we measure at proton level
 - Introduces a strong dependence on PDFs

$$A_{\rm FB} = \frac{d^3\sigma(\cos\theta^* > 0) - d^3\sigma(\cos\theta^*)}{d^3\sigma(\cos\theta^* > 0) + d^3\sigma(\cos\theta^*)}$$

- ×

but higher sensitivity

CMS: 0.23101 ± 0.00036 (stat) ± 0.00018 (syst) ± 0.00016 (th) ± 0.00031 (PDF) ATLAS: 0.23140 ± 0.00021 (stat) ± 0.00016 (syst) ± 0.00024 (PDF)

RESULTS

ATLAS-CONF-2018-037

- 0.23152 ± 0.00016
- 0.23221 ± 0.00029
- 0.23098 ± 0.00026
- 0.23148 ± 0.00033
- 0.23142 ± 0.00106
- 0.23101 ± 0.00053
- 0.23080 ± 0.00120
- 0.23119 ± 0.00049
- 0.23166 ± 0.00043
- 0.23140 ± 0.00036

- Higher order electroweak corrections through form-factors (ATLAS) or not included (CMS)
- LHCEWWG working to benchmark available codes at NLO+h.o. accuracy and get prescription for uncertainties

(0.16% precision)

PDFS AND SIN² θ_{W}

- **PDF** uncertainties are constrained in the interpretation exploiting their different dependence on mll, yll
 - ATLAS profiling of the Hessian eigenvectors
 - CMS Bayesian reweighing
- PDFs remain the largest source of uncertainty
 - CMS: PDF syst ± 31 , spread among sets ~ 65 [10⁻⁵]
 - ATLAS: PDF syst ±24, spread among sets ~28 [10⁻⁵]
- **EFfort in the LHCEWWG to** benchmark different global fits and provide correlations between different PDFs

	CT10	CT14	MMHT14	NNPDF31	
$\sin^2 \theta_{\text{eff}}^{\ell}$	0.23118	0.23141	0.23140	0.23146	
	U	ncertainties	s in measuren	nents	
Total	39	37	36	38	
Stat.	21	21	21	21	
Syst.	32	31	29	31	

W-MASS AT HADRON COLLIDERS

- * Not possible to fully reconstruct W mass, m_W obtained through template fits to p_T and m_T
 - ▶ **pT**^I sensitive to **pT**^W modelling
 - ▶ m_T sensitive to the recoil resolution
- Extremely demanding on detector understanding
- Hard to control theory modelling

$$\vec{p}_{\mathrm{T}}^{\mathrm{miss}} = -\left(\vec{p}_{\mathrm{T}}^{\ell} + \vec{u}_{\mathrm{T}}\right) \quad m_{\mathrm{T}} = \sqrt{2}$$

ATLAS W-MASS

- First LHC W-mass measurement at 7 TeV by ATLAS
 - 4.7 fb⁻¹ with $\langle mu \rangle \sim 9$; W $\rightarrow e_{\nu}$ and W $\rightarrow \mu_{\nu}$ channels
 - Excellent agreement among the 28 categories (e/ μ , eta, W⁺/W⁻, p_{T,I}/m_T...)

 m_W = 80369.5 ± 18.5 MeV, =

 $80369.5 \pm 6.8 \text{ MeV}(\text{stat.}) \pm 10.6 \text{ MeV}(\text{exp. syst.}) \pm 13.6 \text{ MeV}(\text{mod. syst.})$

EPJC 78 (2018) 110

W-MASS ANCILLARY MEASUREMENTS

Clean Z-boson sample essential to constrain experimental × and theoretical uncertainties and extrapolate to the W

ATLAS W-MASS UNCERTAINTIES

Combined	Value	Stat.	Muon	Elec.	Recoil	Bckg.	QCD	EWK	PDF	Total	χ^2/dof
categories	[MeV]	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	of Comb.
$m_{\rm T}$ - $p_{\rm T}^{\ell}, W^{\pm}, e$ - μ	80369.5	6.8	6.6	6.4	2.9	4.5	8.3	5.5	9.2	18.5	29/27

Result dominated by the p_T measurement with large QCD uncertainties ×

- PDF uncertainties on light-quark sea decomposition from u, d, s (cs \rightarrow W fraction) and well as valence-shape uncertainty (polarisation effects): W+-W-
- **Modelling of small p_T^W with significant uncertainties;** NNLO+NNLL using W/Z-ratio in disagreement with data: u_{II}

21

LHCB W-BOSON MASS

Constrain uncertainties using $\mu\mu$ resonances

- Muon momentum calibration and modelling from Z, Y(1S) and J/ Ψ data and simulation
- Z-boson sample used to constrain theoretical uncertainties and extrapolate to the W

LHCB W-BOSON MASS

Achieves a precision of ~32 MeV, consistent with other measurements and with SM ×

Muon momentum scale and resolution

* Encouraging prospects for the future:

- ~10 MeV statistical uncertainty with full Run2
- But modelling systematics harder to reduce
- Expect factor ~2 reduction in PDF uncertainties combining with ATLAS/CMS

TEVATRON/LHC W-MASS COMBINATION

×

Ongoing Tevatron/LHC EW WG effort towards a combination Experiment endorsed world average, and update of past measurements to recent PDFs

$$m_W^{new} = m_W^{ref} - \delta m_W^{QCD} - \delta m_W^{QCD}$$

published value

Improved predictions

PDF W PDF extrapolation

- PDFs main source of correction and uncertainty correlations
 - Other sources very small (EW corrections) or mostly decorrelated ($p_T W/Z$)
- Correction applied in a two-step procedure: ×
 - 1. Correct all measurements to a common PDF/QCD
 - 2. Combine them properly including correlations

 δm_W^{PDF} correction to reference PDF δm_{W}^{QCD} correction to QCD modelling beyond quoted uncertainties

ANGULAR COEFFICIENTS IN DRELL-YAN

Boson polarisation in legacy Resbos different from Resbos2 and other codes

- NNLO matching in Resbos not fully differential and resummation only impacts A0, A4
- Motivates a ~10 MeV correction of Tevatron measurements

PRL 129 (2022) 091801

First measurement of Ai in ZII in the forward region

CMS: FROM W-HELICITY TO MW

- Intermediate result towards an m_w measurement
- Multidifferential measurement of lepton p_T-eta and of W rapidity and helicity cross-section
 - Different bins in lepton p_T-eta retain information on the W-boson rapidity and helicity states
- Large sensitivity (and constraints) on valence-quark PDFs

Strategy for m_W

- Make use of well-understood high-mu lepton p_T sample
- Minimal assumptions on W vs Z uncertainties
- Reduction of uncertainties through in-situ constraints

QCD systematics on pT^{I} mainly due to uncertainties on p_{T}^{W} ×

- ~2% uncertainty in $pTW \rightarrow ~10$ MeV in m_W , at the LHC limited by recoil resolution
- 2.5% uncertainty from fitting to Z and extrapolating to W

Special low- μ datasets collected in Run 2 SK

- ATLAS/CMS: 380/200 pb⁻¹ at 13TeV, 260/300 pb⁻¹ at 5TeV; $<\mu>\sim2$
- Low pileup and special detector conditions to reach good recoil resolution
- Aim for 1% precision in 5 GeV-bins of pTW at low pT
- Possible sample also for future m_W measurements (and more low pile-up data in Run3)

M_W PROSPECTS WITH LOW PILE-UP

27

MASS DEPENDENCE OF THE Z P_T

New CMS result off the Z-peak, testing modern calculations

Z BOSON DECAYS INTO NEUTRINOS: INVISIBLE WIDTH

- * Γ_Z^{inv} key parameter to constraint the number of light fermion families
- First direct measurement of Γ_Z^{inv} at a hadron collider from CMS

* Γ_Z^{inv} from ratio of $Z \to \nu\nu$ to $Z \to ll$ Jets+ p_T^{miss} to select $Z \to \nu\nu$

$$\Gamma(Z \to \nu \bar{\nu}) = \frac{\sigma(Z + \text{jets})\mathcal{B}(Z \to \nu \bar{\nu})}{\sigma(Z + \text{jets})\mathcal{B}(Z \to \ell \ell)} \Gamma(Z \to \ell \bar{\ell})$$

Competitive with LEP direct measurement

Lepton Flavour Universality in $W \to \tau \nu$

Lepton Flavour Universality at the core of the SM X

- W and Z branching ratios to e^{\pm} , μ^{\pm} , τ^{\pm} should be equal
- Long-standing LEP discrepancy for $W \rightarrow \tau \nu$ decays, $R(\tau/\mu) = B(W \rightarrow \tau \nu)/B(W \rightarrow \mu \nu)$ 2.7 σ away from SM
- New ATLAS and CMS measurements weighting in
 - Exploit large unbiased sample of Ws from $t\bar{t}$ decays

CMS Phys. Rev. D 105 (2022) 072008 ATLAS Nature Phys. (2021) $R(\tau/\mu) = 0.985 \pm 0.020$ $R(\tau/\mu) = 0.992 \pm 0.013$

 $R(\tau/\mu)$ consistent with the SM and LFU and more precise than LEP!

Display of an ATLAS top anti-top event in

Run: 311071 Event: 1452867343

TOP-PAIR CROSS-SECTIONS

http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/TOP-22-012/index.html

TOP-PAIR CROSS-SECTIONS

* ATLAS + CMS combination of Run1 results

2.5% precision; 25% improvement from individual results

CMS DILEPTONIC TTBAR CROSS-SECTIONS

- *
 - Using both a parton level and a fiducial particle-level definition

Hundreds of distributions measured with unprecedented precision (between 2 - 20%)

CMS DILEPTONIC TTBAR CROSS-SECTIONS

- *
 - Using both a parton level and a fiducial particle-level definition

Hundreds of distributions measured with unprecedented precision (between 2 - 20%)

TOP QUARK MASS

- * Direct measurement from reconstructed top decay products
 - MC mass m_t^{MC} (as defined in the Monte Carlo)
 - Highest sensitivity, now below 500 MeV (<0.3%) precision)
 - Hard to improve without improved understanding of non-perturbative effects in MC
- × Indirect measurements from sensitive observables (e.g. ttbar cross-sections) +theory
 - Use a well defined scheme (e.g. mt^{pole}, mt(mt))
 - Approaching <1 GeV precision
- Combinations of different measurements exploits anti-correlation in the uncertainties to constrain them

ATLAS+CMS Preliminary LHCtopWG	m_{top} summary, $\sqrt{s} = 7-13$	TeV June 2022
World comb. (Mar 2014) [2] stat	total stat	-
	m _{top} ± total (stat ± syst)	Vs Ref.
LHC comb. (Sep 2013) LHCtopWG H	173.29 ± 0.95 (0.35 ± 0	.88) 7 TeV [1]
World comb. (Mar 2014)	173.34 ± 0.76 (0.36 ± 0	.67) 1.96-7 TeV
ATLAS, I+jets	$172.33 \pm 1.27 (0.75 \pm 1.00)$	02) 7 TeV [3]
ATLAS, dilepton	173.79 ± 1.41 (0.54 ± 1.3	30) 7 TeV [3]
ATLAS, all jets	175.1 ± 1.8 (1.4 ± 1.2)	7 TeV [4]
ATLAS, single top	172.2 ± 2.1 (0.7 ± 2.0)	8 TeV [5]
ATLAS, dilepton	172.99 ± 0.85 (0.41 ± 0.1	74) 8 TeV [6]
ATLAS, all jets	173.72 ± 1.15 (0.55 ± 1.	01) 8 TeV [7]
ATLAS, I+jets	172.08 ± 0.91 (0.39 ± 0.	82) 8 TeV [8]
ATLAS comb. (Oct 2018) H	H 172.69 ± 0.48 (0.25 ± 0	.41) 7+8 TeV [8
ATLAS, leptonic invariant mass (*)	174.48 ± 0.78 (0.40 ± 0.	67) 13 TeV [9]
CMS, I+jets	173.49 ± 1.06 (0.43 ± 0.5	97) 7 TeV [10]
CMS, dilepton	172.50 ± 1.52 (0.43 ± 1.4	46) 7 TeV [11]
CMS, all jets	173.49 ± 1.41 (0.69 ± 1.1	23) 7 TeV [12]
CMS, I+jets	172.35 ± 0.51 (0.16 ± 0.4	48) 8 TeV [13]
CMS, dilepton	172.82 ± 1.23 (0.19 ± 1.3	22) 8 TeV [13]
CMS, all jets	172.32 ± 0.64 (0.25 ± 0.	59) 8 TeV [13]
CMS, single top	172.95 ± 1.22 (0.77 ± 0.5	95) 8 TeV [14]
CMS comb. (Sep 2015) 🛛 🛏	H 172.44 ± 0.48 (0.13 ± 0	.47) 7+8 TeV [1
CMS, I+jets	172.25 ± 0.63 (0.08 ± 0.	62) 13 TeV [15
CMS, dilepton	-1 172.33 ± 0.70 (0.14 ± 0.0	69) 13 TeV [16
CMS, all jets	-1 172.34 ± 0.73 (0.20 ± 0.7	70) 13 TeV [17
CMS, single top	172.13 ± 0.77 (0.32 ± 0.7	70) 13 TeV [18
CMS, I+jets (*)	171.77 ± 0.38	13 TeV [19
CMS, boosted (*)	172.76 ± 0.81 (0.22 ± 0.1	78) 13 TeV [20
* Preliminary	[1] ATLAS-CONF-2013-102 [8] EPJC 79 (2012) [2] arXiv:1403.4427 [9] ATLAS-CON [3] EPJC 75 (2015) 330 [10] JHEP 12 (2012) [4] EPJC 75 (2015) 158 [11] EPJC 72 (2012) [5] ATLAS-CONF-2014-055 [12] EPJC 74 (2012)	019) 290 [15] EPJC 78 (2018) NF-2019-046 [16] EPJC 79 (2019) 2012) 105 [17] EPJC 79 (2019) 2012) 2202 [18] arXiv:2108.1040 2014) 2758 [19] CMS-PAS-TOP-
	[6] PLB 761 (2016) 350 [13] PRD 93 (2 [7] JHEP 09 (2017) 118 [14] EPJC 77 (2	016) 072004 [20] CMS-PAS-TOP- 2017) 354
165 170	175 180	185
	m _{top} [GeV]	

CMS DIRECT MASS MEASUREMENT WITH A LIKELIHOO

- using 2016 I+jets top data (36 fb⁻¹)
- (QCD scales, PDFs, ME/PS matching,

CMS DIRECT MASS MEASUREMENT WITH A LIKELIHOOD FIT

But beware of the strong pulls and constraints observed on the nuisance parameters *

36 fb⁻¹ (13 TeV)

ATLAS TOP MASS IN DILEPTONIC CHANNEL

 $m_{top}^{dilepton} = 172.63 \pm 0.20 \text{ (stat)} \pm 0.67 \text{ (syst)} \pm 0.37 \text{ (recoil)} \text{ GeV}$

- New full Run2 measurement in dileptonic decay channel
 - DNN to match the lepton, b-jet pairs
 - Unbinned likelihood fit to mbl to extract mtop
 - Uncertainties dominated by JES, ME/PS matching, color reconnection, Pythia recoil settings

Submitted to EPJC

COLOR RECONNECTION IN TTBAR EVENTS

DIRECT MASS MEASUREMENT WITH A SOFT MUON

Avoid large uncertainties from hadronic jet reconstruction using a fully leptonic quantity

Dominant uncertainties from knowledge of

BR and fragmentation fractions reweighted to world average

m_{top} from likelihood fit to m_{lmu} distribution

 $m_t = 174.41 \pm 0.39 \text{ (stat.)} \pm 0.66 \text{ (syst.)} \pm 0.25 \text{ (recoil)} \text{ GeV}$

41

B-FRAGMENTATION IN TP EVENTSO

Run2 measurements from ATLAS and CMS can now be used to validate and constrain the models

CMS *Preliminary* 35.9 fb⁻¹ (13 TeV)

TOP QUARK MASS FROM BOOSTED JET MASS

- * Measurement of the unfolded normalised jet mass in hadronic decays of a boosted top quark
 - XCone with R=1.2 for jets reclustering at particle level
 - Require a jet with $p_T > 400$ GeV
- * Linear template fit to extract m_{top} $m_{top} = 172.76 \text{ pm } 0.81 \text{ GeV} (0.22 \text{ stat})$
- Paves the way to future m_{top} extractions × using analytic calculations

ATL-PHYS-PUB-2021-042

TOP POLE MASS WITH TTBAR + JET

- Pole mass from differential measurement of dileptonic ttbar+jet cross-sections ×
- NN used to reconstruct the ttbar kinematics and discriminate against Z+jets background ×
- Measurement binned in $\rho = 2 \times m_0/m_{tt}$ +jets (m₀=170 GeV) <u>EPJC 77 (2017) 794</u> ×
- Simultaneous profile likelihood fit in four rho bins to extract the signal *

e±u∓

POLE MASS WITH TTBAR+JET

×

×

Electron candidate Muon candidate

Run: 349169 Event: 1043374730 2018-04-30 01:58:32 CEST

MULTI-BOSON PRODUCTION

Event display of a candidate $WWW \rightarrow 3l + E_T^{\text{miss}}$ event.

DIBOSON CROSS-SECTIONS STATUS

Reaching few percent accuracies for di-boson production *

CMS FULL RUNZ W+GAMMA CROSS-SECTIONS

PRD 105 (2022) 052003

STANDARD MODEL AT THE LHC: THE FUTURE

Parameter	Current precision	HL-LHC expected
ΜH	170 MeV	10-20 Me
$sin^2 heta_{eff}$	50 10 ⁻⁵	15 10 ⁻⁵
mw	20 MeV	4 MeV
mt ^{MC}	500 MeV	200 Me\
Mt ^{pole}	~1 GeV	< 500 Me
αs(mz)	~2%	~1%

Remarkable opportunities for precision physics at the LHC ×

Many novel ideas and methodologies that are/will be pursued, also with the coming datasets

SUMMARY

Mounting precision allows for stringent SM tests which can

BACKUP

INDIRECT MEASUREMENTS

$$m_t^{\text{pole}} = 173.1^{+2.0}_{-2.1} \,\text{GeV}$$
 (1.15%)

TTBAR CROSS-SECTIONS (DILEPTONIC)

TTBAR CROSS-SECTIONS

PRECISION PROSPECTS FOR HL-LHC

Parameter	Current precision	HL-LHC expected
ΜH	170 MeV	10-20 Me
$sin^2 heta_{eff}$	50 10 ⁻⁵	15 10 ⁻⁵
mw	20 MeV	4 MeV
m _t ^{MC}	500 MeV	200 Me\
m _t pole	~1 GeV	< 500 Me
αs(mz)	~2%	~1%

ATLAS DIBOSON EFT COMBINATION

First step towards global EFT interpretations ×

* ATLAS combined fit of WW, WZ, 4I, and VBF Z measurements : 6 differential inputs

W POLARISATION AT 13 TEV

Novel CMS measurement of differential cross-sections and charge asymmetry for the two W helicity states

- Cross-sections measured as a function of $p_T{}^I$ and $\eta{}^I$
- Integrated W cross-sections and charge asymmetry sensitive to valence quark PDFs

$$A_W \sim \frac{u_V(x_0) - d_V(x_0)}{u(x_0) + d(x_0)}$$

Forward-backward asymmetry in Drell-Yan probe of the V-A structure of weak interactions

At high-masses, probe extra massive gauge bosons

HIGH-MASS AFB IN $Z \rightarrow l^+ l^-$

- Measurement in agreement with NLO QCD
- Derive limits on Z' in the Sequential SM
- Excludes $m_{Z'} < 4.4$ TeV at 95% CL
- Comparable with ~ 5 TeV from direct searches

- Direct measurements have an average precision of ~16x10⁻⁵
- **Removing the direct** measurements the indirect determination has a precision of ~6x10⁻⁵

THE WEAK MIXING ANGLE

The weak mixing angle in the SM parametrises the mixing between the EM and weak fields

And provide and indirect determination of the W-boson mass

CMS W BRANCHING FRACTIONS

- Maximum likelihood fit using templates
 - Categories based on numbers of leptons, jets, b-jets
 - tW and WW processes considered as part of the signal
 - Kinematic discriminant in each category used to separate

$$\frac{\mathcal{B}(W \to q\overline{q}')}{-\mathcal{B}(W \to q\overline{q}')} = \sum_{\substack{i=(u,c), \\ j=(d,s,b)}} |V_{ij}|^2 \Big[1 + \sum_{i=1}^4 c_i \left(\frac{\alpha_S}{\pi}\right)^i + c_{EW}(\alpha) + c_{mix}(\alpha) \Big]$$

$$\begin{array}{c} \alpha_{\rm S}(m_{\rm W}^2) & |V_{\rm cs}| & \sum_{ij} |V_{ij}|^2 \\ \hline 0.095 \pm 0.033 & 0.967 \pm 0.011 & 1.984 \pm 0.021 \end{array}$$

