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‣ The goal is to have fully-differential event 
generation at higher-orders (NNLO)

The Geneva method

SIMONE ALIOLI  -  MPI WS

‣ Resummation plays a key role in the 
defining the events in a physically sensible 
way

‣ Results at partonic level are further 
evolved by the shower matching and 
hadronization



way of overcoming the problem is to adjust the free parameters of the smooth cone isolation

algorithm to reproduce the e↵ects of the fixed cone procedure so that a comparison is at

least feasible. A second viable possibility, which has been recently investigated in [10, 44],

is the introduction of a hybrid cone isolation procedure which is very similar in spirit to

the smooth cone isolation. In this case the theoretical calculation is initially carried out

using the smooth cone isolation with a small radius parameter Riso such that only a tiny

slice of phase space around the photon direction is removed. As second step, the fixed cone

isolation procedure with a larger radius R � Riso is applied to the events which passed

the smooth cone criterion. In other words one initially applies very loose smooth cone

isolation cuts which are then tightened by the fixed cone procedure. In this paper we use

both the smooth cone and the hybrid isolation procedures. The first method is used for the

comparison to the results obtained with the MATRIX code [26] in subsection 4.3, while the

second isolation requirement is instead used for the comparison to the LHC data in section

5. The precise values of the isolation parameters, the selection cuts and the set of parton

distribution functions (PDF) which are employed in our calculations will be specified in

the sections below.

3 Resummation in Soft-Collinear E↵ective Theory

The N -jettiness [25] resolution variable is used within the Geneva framework to discrimi-

nate between resolved emissions with di↵erent jet multiplicities. Given anM -particle phase

space point �M with M � N , it is defined as

TN (�M ) =
X

k

min
�
q̂a · pk, q̂b · pk, q̂1 · pk, . . . , q̂N · pk

 
, (3.1)

where the sum over k runs over all QCD partons and where q̂i = ni = (1,~ni) are light-like

reference vectors parallel to the beam and jet directions. The limit TN ! 0 describes a

N -jet event, where the unresolved emissions can either be soft or collinear to the final state

jets or to the beams. This observation translates into a factorization formula [23] for the

TN spectrum in this limit. In the case of color singlet final state processes (such as Drell-

Yan, HV , diphoton production,. . . ) the relevant resolution variable which is resummed to

NNLL0 accuracy is the 0-jettiness (beam thrust). Starting from the general definition in

(3.1), the expression for 0-jettiness is considerably simplified [25]

T0 =
X

k

|~pkT | e
�|⌘k�Y | , (3.2)

where |~pkT | and ⌘k are the transverse momentum and the rapidity of the emission pk. The

0-jettiness cross section for small T0 obeys a factorization formula which has been derived

in [23, 24] originally for Drell-Yan, but it holds for any final state color singlet production

process

d�SCET

d�0dT0
=
X

ij

H��

ij
(Q2, t, µ)

Z
dta dtbBi(ta, xa, µ)Bj(tb, xb, µ)S

✓
T0 �

ta + tb
Q

,µ

◆
, (3.3)
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[Stewart, Tackmann,Waalewijn `09,`10] 
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Resolution parameters for N extra emissions

‣ The key idea is the introduction of a resolution variable  that measure the hardness of the 
-th emission in the  phase space. 


‣ For color singlet production one can have ,  , ,…. 


‣ N-jettiness is a valid resolution variable: given an M-particle phase space point with 


‣ The limit        describes a N-jet event where the unresolved emissions  are collinear to 
the final state jets/initial state beams or soft


‣ For color-singlet final states, it reduces  to 0-jettiness


‣ When an extra jet is present 1-jettiness used for   

rN
N + 1 ΦN

r0 = qT p j
T kT-ness

M ≥ N

τN → 0

r1

N-jettiness as jet-resolution variable

I N-jettiness is a good resolution parameter. Global physical observable
with straightforward definitions for hadronic colliders, in terms of beams qa,b

and jet-directions qj

TN =
2

Q

X

k

min
�

q1 · pk, . . . , qN · pk

 
) TN =

2

Q

X

k

min
�

qa · pk, qb · pk, q1 · pk, . . . , qN · pk

 

Jet 2

Soft

Soft Jet 1

e+ e�

1

2 Jet 2

Jet b Jet a

Soft

Jet 3

Jet 1b

a

1

32

p p

`�

`+

I N-jettiness has good factorization properties, IR safe and resummable at
all orders. Resummation known at NNLL for any N in SCET [Stewart et al. 1004.2489,

1102.4344]I TN ! 0 for N pencil-like jets, TN � 0 spherical limit.
I TN < T cut

N limits the activity outside the jets
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Partitioning phase space with resolution cuts
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dσ
dΦ2

(r0 > rcut
0 , r1 > rcut

1 ) = r0 > rcut
0

r1 > rcut
1

NNLO example : start with two widely separated emission.

Can be described well with LO  matrix elements.

What happens when emissions start growing closer and closer ?

2

The logarithms of the resolution parameters grow larger

and larger. They need to be resummed to give a physically sensible 

description.  This takes care of their IR divergencies.

Generated events must have integrated cross section LO   accurate 

and the full N+2-body kinematics must be retained.
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Partitioning phase space with resolution cuts
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dσ
dΦ1

(rcut
1 ) = {

r0 > rcut
0

r0 > rcut
0

r0 > rcut
0

r1 < rcut
1

When one emission becomes unresolved  must be resummed.  


Integrated quantities  require NLO  accuracy via local subtraction  .


 differential information below  is lost during projection to .


No difference for preserved quantities, in general can be made a power correction in .

Mapping that preserves  singular behavior is required for correct event definition.

rcut
1

1
dΦ2

dΦ1
θ(r1 < rcut

1 )

Φ2 rcut
1 Φ1

rcut
1

r0

r1 = 0

r1 = 0dΦ1 = dΦ0dr0dzdφ

Next: one hard and 
one unresolved 



N

V

Partitioning phase space with resolution cuts
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dσ
dΦ0

(rcut
0 ) = {

r0 < rcut
0

r0 < rcut
0

r0 < rcut
0

r0 = 0

r0 = 0

r0 = 0

r1 < rcut
1

 Zero jet bin must have 

NNLO  integrated accuracy.

N-jettiness subtraction used.


The resummation of both  

and  ensures physically 
sensible xsec and IR-finite 
events.  

0

rcut
0

rcut
1

Last: two unresolved 
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Resumming resolutions parameters not really a new idea, SMCs do it since the ‘80s with 
Sudakov factors


The key difference is that using the proper resummation at the proper order has several  
benefits:  systematically improvable (NLL, NNLL,N3LL,…), lowering theoretical uncertainty at 
each step. Including primed accuracy captures the exact singular behaviour at .


The higher the accuracy the lower the cuts can be pushed without risking missing higher 
logarithms being numerically relevant. The lower the cuts the smaller the nonsingular 
power corrections due to phase-space projections will affect the results differentially.


δ(rN)

For NNLO event generation 
one needs at least NNLL’  + 

NNLO accuracy to control 
the full  singular 
contributions. 

r0

α2
s gg → HH

LHC 13 TeV

Resummation of resolution parameters
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Ideally one would want also NLL’  to capture the 1/2-jet separation. 


When  the joint resummation should be performed (not yet there)


Unitarity can be exploited to perform the double resummation of  and  , at the price 
of losing ability to systematically improve particular regions of the phase space 


Final GENEVA partonic formulae combine resummation and matching to fixed-order 


r1

r0 ∼ r1 ≪ Q

r0 r1

From resummation to event generation



Spreading out the resummation
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Splitting functions are required to make 
resummed spectrum fully-differential.


New on-the-fly evaluation and better 
functional forms captures better the  singular 
behavior of matrix elements also for different 
resolution variables.


dσ
dΦNdrN

PN→N+1 →
dσ

dΦN+1

pp → Z /γ* → ℓ+ℓ−



Interface with the parton shower

 measures hardness of N+1-th 
emission


If shower ordered in , start from largest 
value allowed by N-jettiness


Let the shower evolve unconstrained.


Veto an event if after                  shower 
emissions    
and retry the whole shower.

𝒯N(ΦN+1)

kT

𝒯N(ΦN+M) > 𝒯N(ΦN + 1)
M ≥ 1

0-jet and 1-jet bins are treated differently: starting scale is resolution cutoff.

[from D.Napoletano]

All the relevant phase space is correctly covered to ensure double log accuracy

 Method independent from shower used: done with PYTHIA8, DIRE & SHERPA.
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Interface with the parton shower
Effect of shower on resolution parameter directly resummed is not known analytically, but  
numerically is very small. 

For 0-jettiness where   one can estimate that the average shift due to the 

first shower emission is of similar size of the missing higher-order N3LL contributions 

                                                                                                                                             [SA et al. 1508.01475]


For  one can take advantage off the shower recoil maps to preserve the quantity being 
resummed. 

< 𝒯2 > ∼ α2
s 𝒯0

α3
s /𝒯0

qT
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Interface with the parton shower

Effect of shower on  resolution variables different from what is resummed more marked.


GENEVA framework allows this comparison for DY when resumming  or 


Correct approach here would be joint  resummation, avoids need of splitting func.

  


qT 𝒯0

(𝒯0, ⃗qT)
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Implemented processes

Method has been tested and validated with several color singlet production processes:

 DY, ZZ, , VH, , Higgs decays


  


Wγ γγ
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Higgs production via gluon fusion
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Heavy top-quark limit rescaled with exact 
LO  dependence (rEFT).


NNLL’  resummation requires gluon 
beam functions


Include 7-point scale variations, 
introducing explicit  dependence in 
beam function and their pert. matching 
coefficients .


Additional variations must be considered 
also in the resummation region to probe 
independent  and  changes.


Variations combine in inclusive quantities 
and give perfect agreement in both central 
values and FO variations with MATRIX.

mt

𝒯0

μF

Iij

μB μF



Resummation of timelike logarithms
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Showered results
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PYTHIA8 showering gives expected results for inclusive quantities. 

Reasonable differences for more exclusive ones.



Comparison with LHC data at fiducial level
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Fiducial cross section affected by resummation, 
parton shower effects, hadron decays, mainly  due 
to photon isolation requirements, etc…

Comparison with ATLAS shows similar 
agreement. High  tail sensitive to  effects.pT mt



Double Higgs production
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Calculation in infinite top-quark mass limit

 Very good agreement for  invariant mass and rapidities

Interesting discrepancy when  of the hardest 
Higgs boson   goes to zero. 

Signals  inadequacy of fixed-order calculations 
when  

pT
H1

pT,HH → 0



Double Higgs production: showered results 
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Exploring different shower models: PYTHIA8 standard (simple) and DIRE showers

Inclusive quantities correctly described by both showers.



Double Higgs production: showered results
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DIRE shower has a better treatment of recoil (less global) which reduces the 
shower effects in exclusive quantities.



Zero-jettiness factorization for top-quark pairs

dσ
dΦ0dτB

= M ∑
ij={qq̄,q̄q,gg}

∫ dta dtb Bi(ta, za, μ) Bj(tb, zb, μ) Tr[Hij(Φ0, μ) Sij(MτB −
ta + tb

M
, Φ0, μ)]

Factorization formula derived using SCET+HQET in the region where  are all 
hard scales.   [SA et al. 2111.03632]


In case of boosted regime  one would instead need a modified two-jettiness  
[Fleming, Hoang,Mantry,Stewart `07][Bachu,Hoang,Mateu,Pathak,Stewart `21]

Mtt̄ ∼ mt ∼ ̂s

Mtt̄ ≫ mt

Hard functions 

(color matrices)

Soft functions 

(color matrices)

Beam functions [Stewart, Tackmann, 
Waalewijn, [1002.2213], known up to N LO3

It is convenient to transform the soft and beam functions in Laplace space to solve the 
RG equations, the factorization formula is turn into a product of (matrix) functions

ℒ[ dσ
dΦ0dτB ] = M ∑

ij={qq̄,q̄q,gg}

B̃i(ln
Mκ
μ2

, za) B̃j(ln
Mκ
μ2

, zb) Tr[Hij(ln
M2

μ2
, Φ0) S̃ij(ln

μ2

κ2
, Φ0)]

ℒ[ dσ
dΦ0dτB ] = M ∑

ij={qq̄,q̄q,gg}

B̃i(ln
Mκ
μ2

, za) B̃j(ln
Mκ
μ2

, zb) Tr[Hij(ln
M2

μ2
, Φ0) S̃ij(ln

μ2

κ2
, Φ0)]
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Zero-jettiness resummation for top pairs
Resummed formula valid at any logarithmic order 

the resummed cross section in a compact form as

d�

d�0d⌧B
= U(µh, µB, µs, Lh, Ls)

⇥ Tr

⇢
u(�t, ✓, µh, µs)H(M,�t, ✓, µh)u

†(�t, ✓, µh, µs) S̃B(@⌘s + Ls,�t, ✓, µs)

�

⇥ B̃a(@⌘B + LB, za, µB)B̃b(@⌘0B + LB, zb, µB)
1

⌧1�⌘tot
B

e��E⌘tot

�(⌘tot)
. (3.1)

The derivative terms inside the arguments of the soft and beam functions act on the factor

in the last line of the previous equation, which we refer to as the generating function. In

the previous formula we have defined

U(µh,µB, µs, Lh, Ls) = (3.2)

exp


4S(µh, µB) + 4S(µs, µB) + 2a�B (µs, µB)� 2a�(µh, µB)Lh � 2a�(µs, µB)Ls

�
.

We have also introduced the quantities ⌘s ⌘ 2a�(µ, µs), ⌘B ⌘ 2a�(µB, µ), ⌘tot = 2⌘s +

⌘B + ⌘0
B
, and we explicitly write the beam, soft and hard logarithms as LB = log(M2/µ2

B
),

Ls = log(M2/µ2
s) and Lh = log(M2/µ2

h
). For the derivation of the formula above we have

used the relations

u(�t, ✓, µc, µa)u(�t, ✓, µb, µc) = u(�t, ✓, µb, µa) ,

a�(µa, µc) = a�(µa, µb) + a�(µb, µc) ,

a�i(µa, µc) = a�i(µa, µb) + a�i(µb, µc) ,

S(µa, µb)� S(µc, µb) = S(µa, µc)� a�(µc, µb) log
µa

µc

. (3.3)

to simplify the final expressions.

The expression in eq. (3.1) is our master formula and the primary outcome of this

work. It is formally valid at all logarithmic orders. It is possible to evaluate it at NLL0,

NNLL and NNLL0 depending on the order in ↵s at which the anomalous dimensions and

the boundary terms are available.

In order to evaluate u we first find the matrix ⇤ which diagonalises the LO non-cusp

hard anomalous dimension

�
h(0)

D
= ⇤�1

�
h(0)⇤ (3.4)

and define the vector ~�h(0) consisting of the eigenvalues of the diagonal matrix �
h(0)

D
. The

solution of the non-cusp evolution matrix in eq. (2.14) up to NNLL can then be obtained

perturbatively as an expansion in ↵s following App. A of Ref. [32] and the references

therein [73, 74]. We find

uNNLL(�t, ✓, µh, µ) =

2

4⇤
✓
1 +

↵s(µ)

4⇡
K

◆0

@

↵s(µh)

↵s(µ)

�~�h(0)

2�0

1

A

D

✓
1� ↵s(µh)

4⇡
K

◆
⇤�1

3

5

O(↵s)

(3.5)
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where
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The final accuracy depends on the availability of the perturbative ingredients
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Figure 1: Approximate fixed order results for the T0 distribution obtained from our

factorisation theorem compared with full calculations at LO (left) and NLO (right). The

approximate results correctly reproduce the fixed order behaviour in the T0 ! 0 limit.

cross section as a function of ⌧B relative to the fixed order calculation. This is shown at

LO1 and NLO1 accuracy in fig. 2. We see that the singular contribution to the cross section

becomes of a similar size to the fixed order when ⌧B is just above 0.2. The behaviour at

di↵erent orders is very similar. We therefore make the choices

y0 = 1.0GeV/M , {y1, y2, y3} = {0.1, 0.175, 0.25} . (4.3)

We now discuss the resummed results. In order to estimate the theoretical uncer-

tainties, we vary the central choices for the profile scales in eq. (4.1) independently while

keeping the hard scale fixed. This gives us four independent variations. In addition, we

consider two more profile functions where we shift all the yi transition points together by

±0.05 while keeping all of the scales fixed at their central values. Hence, we obtain in

total six profile variations. We consider the maximal absolute deviation in the results with

respect to the central prediction as the resummation uncertainty.

In fig. 3, we show the peak region of the resummed T0 distribution. We compare

predictions at di↵erent primed and unprimed levels of accuracy from NLL to NNLL0
a.

Examining the unprimed results, we see a large shift in the central value between the NLL

and NNLL results, though the central prediction for the NNLL result remains within the

scale uncertainty band of lower order calculation. We also observe that the size of the band

does not reduce substantially when moving from one order to the next. On the other hand,

comparing the NLL0 and NNLL0
a results we observe both a more stable central value and

– 19 –

Fixed-order comparisons, approximate NLO and approximate NNLO vs LO  and NLO1 1

Singular cross section
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NNLL   is our best prediction, it includes NNLO beam functions, all mixed NLO x NLO terms, NNLL evolution 
matrices, all NNLO soft logarithmic terms. Resummation is switched off via profile scales

′￼a

Figure 3: Resummed T0 distribution at successive unprimed (left) and primed (right)

orders. Compared to the full NNLL0 result, the approximate NNLL0
a prediction shown

on the right misses only finite O(↵2
s ) terms proportional to �(T0) in the hard and soft

functions.

In Geneva implementations at NNLL0+NNLO, it acts as a subtraction term local in T0,
which requires the fixed order calculation to use a T0-preserving mapping. This can have

the positive feature of reducing the impact of fiducial power corrections compared to a

simple slicing approach [80, 81].

Finally, in fig. 5 we present our best predictions across the whole spectrum. In order

to highlight the e↵ect of these higher-order corrections we show the resummed results

at various resummation orders matched to the appropriate fixed order calculations. We

divide the spectrum into the peak region, where resummation e↵ects are most important,

the transition, where resummed and fixed order contributions compete for importance, and

the tail, where the fixed order is dominant. Examining the peak region, we notice slightly

larger uncertainty bands for the NNLL+LO1 compared to the NLL0+LO1. The uncertainty

bands are, however, significantly reduced once NNLL0
a+NLO1 accuracy is reached. In the

transition and tail regions, a clear di↵erence between the NNLL0
a+NLO1 and the lower

order results emerges above ⇠ 60 GeV due to the additional contributions of the NLO1

calculation.
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Resummed results
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Figure 4: Resummed T0 distribution with and without the expansion of U in eq. (3.2), at

both NNLL (left) and NNLL0
a accuracy (right).

Figure 5: Resummed predictions matched to the appropiate fixed order for the T0 distri-

bution at increasing accuracy in the peak (left), transition (centre) and tail (right) regions.
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Figure 2: Comparison of the absolute values for the singular and nonsingular contributions

to the T0 distribution with fixed order results at LO (left) and NLO (right) accuracy.

also a sizeable reduction of the theoretical uncertainties. This highlights the need for full

NNLL0 accuracy in this process, which we hope to report on in future work.

As mentioned in sec. 3.2, for the production of coloured particles there is a certain

amount of ambiguity in whether one should expand terms or instead keep them inside the

exponential prefactor. This ambiguity starts at NNLL accuracy, since these terms are the

first to contribute at O(↵s) in the logarithmic counting of the exponent. Indeed, while it is

necessary to evaluate the non-diagonal evolution matrix u as a perturbative expansion, the

product between the diagonal evolution matrix U and the generating function appearing

e.g. in the first line of eq. (3.14) may be expanded in the same way or kept exact. We

choose the former by default; however, it is interesting to assess the (formally higher order)

e↵ect of making the other choice. In fig. 4, we compare the resummed distribution with

and without this expansion, at both NNLL and NNLL0
a accuracy. We observe very little

di↵erence between the expanded and unexpanded results, suggesting that the e↵ects of

these missing higher order terms in the expanded results are minimal.

We now consider the matching of the resummed and fixed order calculations. We per-

form an additive matching, following the same spirit as recent Geneva implementations

(see e.g. Ref. [49]). The appropriate combinations of resummed and fixed order accuracies

are given in Tab. 1. The total perturbative uncertainty is calculated by adding in quadra-

ture the previously discussed fixed order and resummation uncertainties. We define our

matched spectrum as

d�match

dT0
=

d�resum

dT0
+

d�FO

dT0
�

d�resum

dT0

�

FO

, (4.4)

where the final term removes double-counting between the resummed and fixed order pieces.
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Matched results

Matching to  @NLO improves the 
perturbative accuracy across the whole 

spectrum

t t̄ + j

Extension to full NNLL’ and to event generation is ongoing …
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Conclusion and outlook

‣ GENEVA method allows for fully exploiting higher-order resummation of 
resolution variables in event generation


‣ Tested and implemented for several color singlet production processes


‣ Plan to continue implementation for heavy-quarks and extension to other 
processes with colored particles at the Born level.


‣ Joint resummation of different resolution parameters is the next challenge, 
to extend precision to every corner of the available phase space. 
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Thank you for your attention.


