Power corrections for jet processes

Luca Rottoli
University of
Zurich ${ }^{\text {vit }}$

FN TNF

Swiss National Science Foundation

Precision physics at the LHC

- Precise description of LHC collisions requires a profound understanding of QCD needed across a wide range of energy scales and kinematic domains
- Processes with jets at lowest order: essential for LHC physics (more differential information), but much more complex

Categorization of events into jet bins according to the jet multiplicity
E.g. $p p \rightarrow H+X$: enhanced sensitivity to

Higgs boson kinematics, spin-CP properties, BSM effects...

Fixed-order calculations

- Complex singularity structure for processes with one or more jets
- Fixed order calculations at NNLO accuracy require efficient subtraction methods to extract and cancel virtual and real singularities
- $V+j$ NNLO calculations available with local and non-local subtraction methods [Caola, Melnikov, Schulze]
[Chen, Gehrmann, Gehrmann-De Ridder, Glover, Huss + others (NNLOJET)] [Boughezal, Campbell, Ellis, Focke, Giele, Liu, Petriello, Williams]
- $p p \rightarrow 2 j$ and even $p p \rightarrow 3 j$ recently computed [H.Chawdhry, M.Czakon, A.Mitov, R.Poncelet] ($p p \rightarrow 2 j$ and $p p \rightarrow 3$) [NNLOJET] ($p \mathrm{p} \rightarrow 2 \mathrm{j}$)
- Computationally expensive (100k-1M CPU hours); no public code available (yet)

All-order calculations and matching to parton shower

- Resummation structure for jet observables complicated by the presence of multiple emitters
- Ingredients to reach NNLL accuracy available only for a few selected observables with three or more coloured legs
[Bonciani, Catani, Grazzini, Sărgsyan, Torre, Devoto, Mazzitelli, Kallweit] (tt) [Arpino, Banfi, El-Menoufi](three jet rate)
[Jouttenus, Stewart, Tackmann, Waalewijn](jet mass) [Becher, Garcia I Tormo, Piclum](transverse thrust in pp collisions) [Chien, Rahn, Schrijnder van Velzen, Shao, Waalewijn, Wu]
- Matching of NNLO calculations with parton shower requires the knowledge of the same ingredients entering at NNLL' for a suitable resolution variable which captures the singularities of the $N \rightarrow N+1$ (partonic) jet transition

Jet resolution variables

Resolution variable r smoothly captures the transition from N to $N+1$ configurations

$0 \rightarrow 1$ jet transition: $p_{T}^{\text {veto }}, q_{T}, 0$-jettiness τ_{0}
$1 \rightarrow 2$ jet transition: two-jet resolution parameter $y_{12}, 1$-jettiness τ_{1}
Caveat: the definition of the resolution variable may or may not depend on the jet definition

Jet resolution variables and slicing

Resolution variable r can be used to discriminate a region with 1 -resolved emission from an unresolved region

$$
\sigma_{\mathrm{N}^{\mathrm{k} L O}}=\int d \sigma_{\mathrm{N}^{\mathrm{k} L O}} \Theta\left(r_{\mathrm{cut}}-r\right)+\int d \sigma_{\mathrm{N}^{\mathrm{k}-1} \mathrm{LO}}^{R} \Theta\left(r-r_{\mathrm{cut}}\right)
$$

In the unresolved region the cross section can be approximated by an expansion in the soft-collinear limits (factorisation theorems in EFT, expansion of a resummed computation)

$$
\int d \sigma_{\mathrm{N}^{\mathrm{k} O}} \Theta\left(r_{\mathrm{cut}}-r\right)=\int d \sigma_{\mathrm{N}^{\mathrm{k} L O}}^{\operatorname{sing}} \Theta\left(r_{\mathrm{cut}}-r\right)+\mathcal{O}\left(r_{\mathrm{cut}}^{\ell}\right)=\mathscr{H} \otimes d \sigma_{L O}-\int d \sigma_{\mathrm{N}^{\mathrm{k} L O}}^{C T} \Theta\left(r-r_{\mathrm{cut}}\right)+\mathcal{O}\left(r_{\mathrm{cut}}^{\ell}\right)
$$

Jet resolution variables and slicing

Resolution variable r can be used to discriminate a region with 1 -resolved emission from an unresolved region

$$
\sigma_{\mathrm{N}^{\mathrm{k} L O}}=\int d \sigma_{\mathrm{N}^{\mathrm{k} L O}} \Theta\left(r_{\mathrm{cut}}-r\right)+\int d \sigma_{\mathrm{N}^{\mathrm{k}-1} \mathrm{LO}}^{R} \Theta\left(r-r_{\mathrm{cut}}\right)
$$

In the unresolved region the cross section can be approximated by an expansion in the soft-collinear limits (factorisation theorems in EFT, expansion of a resummed computation)

$$
\begin{gathered}
\int d \sigma_{\mathrm{N}^{\mathrm{L} O}} \Theta\left(r_{\mathrm{cut}}-r\right)=\int d \sigma_{\mathrm{N}^{\mathrm{k} L O}}^{\operatorname{sing}} \Theta\left(r_{\mathrm{cut}}-r\right)+\mathcal{O}\left(r_{\mathrm{cut}}^{\ell}\right)=\mathscr{H} \otimes d \sigma_{\mathrm{LO}}-\int d \sigma_{\mathrm{N}^{\mathrm{k} O}}^{C T} \Theta\left(r-r_{\mathrm{cut}}\right)+\mathcal{O}\left(r_{\mathrm{cut}}^{\ell}\right) \\
\int d \sigma_{\mathrm{N}^{\mathrm{k} L O}}=\mathscr{H} \otimes d \sigma_{L O}+\int\left[d \sigma_{\mathrm{N}^{\mathrm{k}-1} \mathrm{LO}}^{R}-d \sigma_{\mathrm{N}^{\mathrm{k} L O}}^{C T}\right]_{r>r_{\mathrm{cut}}}+\mathcal{O}\left(r_{\mathrm{cut}}^{\ell}\right)
\end{gathered}
$$

Jet resolution variables and slicing

Resolution variable r can be used to discriminate a region with 1 -resolved emission from an unresolved region

$$
\sigma_{\mathrm{N}^{\mathrm{k} L O}}=\int d \sigma_{\mathrm{N}^{\mathrm{k} L O}} \Theta\left(r_{\mathrm{cut}}-r\right)+\int d \sigma_{\mathrm{N}^{\mathrm{k}-1} \mathrm{LO}}^{R} \Theta\left(r-r_{\mathrm{cut}}\right)
$$

In the unresolved region the cross section can be approximated by an expansion in the soft-collinear limits (factorisation theorems in EFT, expansion of a resummed computation)

$$
\int d \sigma_{\mathrm{Nk} \mathrm{LO}} \Theta\left(r_{\mathrm{cut}}-r\right)=\int d \sigma_{\mathrm{Nk} \mathrm{LO}}^{\operatorname{sing}} \Theta\left(r_{\mathrm{cut}}-r\right)+\mathcal{O}\left(r_{\mathrm{cut}}^{\ell}\right)=\mathscr{H} \otimes d \sigma_{L O}-\int d \sigma_{\mathrm{N}^{\mathrm{k} L O}}^{C T} \Theta\left(r-r_{\mathrm{cut}}\right)+\mathcal{O}\left(r_{\mathrm{cut}}^{\ell}\right)
$$

Virtual correction after subtraction
of IR singularities and contribution
of soft/collinear origin (beam, soft,
jet functions)

$$
\int d \sigma_{\mathrm{Nk} \mathrm{LO}}=\mathscr{H} \otimes d \sigma_{L O}+\int\left[d \sigma_{\mathrm{Nk}-1 \mathrm{LO}}^{R}-d \sigma_{\mathrm{Nk} \mathrm{LO}}^{C T}\right]_{r>r_{\mathrm{cut}}}+\mathcal{O}\left(r_{\mathrm{cut}}^{\ell}\right)
$$

Jet resolution variables and slicing

Resolution variable r can be used to discriminate a region with 1 -resolved emission from an unresolved region

$$
\sigma_{\mathrm{N}^{\mathrm{L} \mathrm{LO}}}=\int d \sigma_{\mathrm{N}^{\mathrm{k} \mathrm{LO}}} \Theta\left(r_{\mathrm{cut}}-r\right)+\int d \sigma_{\mathrm{N}^{\mathrm{k}-1 \mathrm{LO}}}^{R} \Theta\left(r-r_{\mathrm{cut}}\right)
$$

In the unresolved region the cross section can be approximated by an expansion in the soft-collinear limits (factorisation theorems in EFT, expansion of a resummed computation)

$$
\int d \sigma_{\mathrm{N}^{\mathrm{L} L O}} \Theta\left(r_{\mathrm{cut}}-r\right)=\int d \sigma_{\mathrm{N}^{\mathrm{k} L O}}^{\operatorname{sing}} \Theta\left(r_{\mathrm{cut}}-r\right)+\mathcal{O}\left(r_{\mathrm{cut}}^{\ell}\right)=\mathscr{H} \otimes d \sigma_{L O}-\int d \sigma_{\mathrm{N}^{\mathrm{k} L O}}^{C T} \Theta\left(r-r_{\mathrm{cut}}\right)+\mathcal{O}\left(r_{\mathrm{cut}}^{\ell}\right)
$$

$$
\int d \sigma_{\mathrm{N}^{\mathrm{k} L O}}=\mathscr{H} \otimes d \sigma_{L O}+\int\left[d \sigma_{\mathrm{N}^{\mathrm{k}-1} \mathrm{LO}}^{R}-d \sigma_{\mathrm{N}^{\mathrm{k} L O}}^{C T}\right]_{r>r_{\mathrm{cut}}}+\mathcal{O}\left(r_{\mathrm{cut}}^{\ell}\right)
$$

Jet resolution variables and slicing

Resolution variable r can be used to discriminate a region with 1 -resolved emission from an unresolved region

$$
\sigma_{\mathrm{N}^{\mathrm{k} L O}}=\int d \sigma_{\mathrm{N}^{\mathrm{k} L O}} \Theta\left(r_{\mathrm{cut}}-r\right)+\int d \sigma_{\mathrm{N}^{\mathrm{k}-1} \mathrm{LO}}^{R} \Theta\left(r-r_{\mathrm{cut}}\right)
$$

In the unresolved region the cross section can be approximated by an expansion in the soft-collinear limits (factorisation theorems in EFT, expansion of a resummed computation)

$$
\int d \sigma_{\mathrm{Nk}^{\mathrm{LO}}} \Theta\left(r_{\mathrm{cut}}-r\right)=\int d \sigma_{\mathrm{N}^{\mathrm{k} L O}}^{\mathrm{sing}} \Theta\left(r_{\mathrm{cut}}-r\right)+\mathcal{O}\left(r_{\mathrm{cut}}^{\ell}\right)=\mathscr{H} \otimes d \sigma_{L O}-\int d \sigma_{\mathrm{Nk} \mathrm{LO}}^{C T} \Theta\left(r-r_{\mathrm{cut}}\right)+\mathcal{O}\left(r_{\mathrm{cut}}^{\ell}\right)
$$

Missing power corrections
below the slicing cut-off

$$
\int d \sigma_{\mathrm{Nk}^{\mathrm{LO}}}=\mathscr{H} \otimes d \sigma_{L O}+\int\left[d \sigma_{\mathrm{N}^{\mathrm{k}-1} \mathrm{LO}}^{R}-d \sigma_{\mathrm{N}^{\mathrm{k} L O}}^{C T}\right]_{r>r_{\mathrm{cut}}}+\mathcal{O}\left(r_{\mathrm{cut}}^{\ell}\right)
$$

Jet resolution variables and higher-order computations

- $p_{T}^{\text {veto }}, q_{T}, \tau_{0}$ are three well known variables able to inclusively describe initial-state radiation
- The knowledge of all $\mathcal{O}\left(\alpha_{s}^{k}\right)$ ingredients (anomalous dimensions and constant terms) allows for the formulation of non-local subtraction methods for QCD calculations at NNLO
[Catani, Grazzini][Gaunt, Stahlhofen, Tackmann, Walsh]

Ingredients at $\mathcal{O}\left(\alpha_{s}^{2}\right)$ have been known since some time for q_{T}, τ_{0}. Recently, also the $\mathcal{O}\left(\alpha_{s}^{2}\right)$ constant terms (soft and beam functions) for $p_{T}^{\text {veto }}$ have been computed, allowing for the formulation of a slicing scheme based on $p_{T}^{\text {veto }}$
[Abreu, Gaunt, Monni, LR, Szafron]

Jet resolution variables and higher-order computations

- Sensitivity to power corrections below the cut-off depends on the observable and affects the performance of the method
- q_{T} displays a faster convergence and generally guarantees a better performance. This (together with the availability of all $\mathcal{O}\left(\alpha_{s}^{3}\right)$ ingredients) allowed for pushing the q_{T} subtraction method at $\mathrm{N}^{3} \mathrm{LO}$ [Billis, Dehnadi, Ebert, Michel, Tackmann '21][Chen, Gehrmann, Glover, Huss, Yang, Zhu '21, 22][Chen, Gehrmann, Glover, Hus, Monni, Re, $\mathbf{L R}$, Torrielli' ${ }^{2} 2$ IICamarda, Cieri, Ferrera '22][Neumann, Campbell '22]
- To reach higher accuracy it is fundamental to have excellent control of the relative size of the power corrections

[Chen, Gehrmann, Glover, Huss, Yang, Zhu '22]

[Chen, Gehrmann, Glover, Huss, Monni, Re, LR, Torrielli '22]

Slicing and power corrections

Naive counting of power corrections at order α_{s}

$$
\int \frac{d r}{r}(A \log r+B) r^{k} \sim A_{k} r^{k} \log r+B_{k} r^{k} \quad k \geq 1
$$

Linear power corrections expected, with a single logarithmic enhancement

\[

\]

Slicing and power corrections

Naive counting of power corrections at order α_{s}

$$
\int \frac{d r}{r}(A \log r+B) r^{k} \sim A_{k} r^{k} \log r+B_{k} r^{k} \quad k \geq 1
$$

Slicing and power corrections

Naive counting of power corrections at order α_{s}

$$
\int \frac{d r}{r}(A \log r+B) r^{k} \sim A_{k} r^{k} \log r+B_{k} r^{k} \quad k \geq 1 \quad \Rightarrow \begin{gathered}
A_{k}=0, \quad B_{k}=0 \\
k=1,3, \ldots
\end{gathered}
$$

$$
\mathcal{O}\left(\alpha_{s}\right) \text { correction }
$$

$$
\Delta \sigma\left(r_{\text {cut }}\right) / \Delta \sigma_{\text {exact }}-1
$$

Odd powers are zero thanks to azimuthal symmetry
[Ebert, Moult, Stewart, Tackmann, Vita, Zhu] [Buonocore, Grazzini, Tramontano] [Cieri, Oleari, Rocco]
q_{T}-subtraction and $p_{T}^{\text {veto }}$ subtraction for coloursinglet processes (no photons, no fiducial cuts)

Slicing and power corrections

Naive counting of power corrections at order α_{s}

$$
\int \frac{d r}{r}(A \log r+B) r^{k} \sim A_{k} r^{k} \log r+B_{k} r^{k} \quad k \geq 1
$$

Definition of fiducial cuts can alter the behaviour of power corrections

Perturbative instability induced by sensitivity to soft radiation in configurations close to the back-to-back limit [Klasen, Kramen '96][Harris, Owen '97][Frixione, Ridolfi '97]

Slicing and power corrections

Naive counting of power corrections at order α_{s}

$$
\int \frac{d r}{r}(A \log r+B) r^{k} \sim A_{k} k^{k} \log r+B_{k} r^{k} \quad k \geq 1 \quad \Rightarrow \begin{gathered}
A_{k}=0, \quad B,<0 \\
k=1,3, \ldots
\end{gathered}
$$

Definition of fiducial cuts can alter the behaviour of power corrections
q_{T}-subtraction for processes with symmetric/ asymmetric cuts on twobody final states

NB: These linear power corrections have a purely kinematical origin and can be predicted by factorisation

Slicing and power corrections

Naive counting of power corrections at order α_{s}

$$
\int \frac{d r}{r}(A \log r+B) r^{k} \sim A_{k} r^{k} \log r+B_{k} r^{k} \quad k \geq 1 \quad \Rightarrow \begin{gathered}
A_{k}=0, \quad B,<0 \\
k=1,3, \ldots
\end{gathered}
$$

Definition of fiducial cuts can alter the behaviour of power corrections

NB: These linear power corrections have a purely kinematical origin and can be predicted by factorisation
[Ebert, Michel, Stewart, Tackmann '20]

As such, they can be easily computed and taken care of [Buonocore, Kallweit, LR, Wiesemann'21] [Camarda, Cieri, Ferrera '21]

Slicing and power corrections

Naive counting of power corrections at order α_{s}

$$
\int \frac{d r}{r}(A \log r+B) r^{k} \sim A_{k} r^{k} \log r+B_{k} r^{k} \quad k \geq 1
$$

$$
\begin{gathered}
A_{k}=0, \quad B_{y}=0 \\
k=1,3, \ldots
\end{gathered}
$$

Isolation requirements (processes with photons) can alter the behaviour of power corrections

Transverse observables for processes with jets

N -jettiness has proved a successful resolution variable for processes with 1 jet, but so far is essentially the only player in the game [Boughezal, Campbell, Ellis, Focke, Giele, Liu, Petriello, Williams]

It may prove worthwhile to explore other resolution variables which may have

- smaller power corrections
- more direct experimental relevance
- simpler relation with parton shower ordering variables
\longrightarrow Applications to NNLO subtraction and beyond

Comparison of resummed prediction with data

Improved NNLO+PS matching

$k_{T}^{\text {ness }}$: definition

[Buonocore, Grazzini, Haag, LR, Savoini]
Looking for a variable capable of capturing the $N \rightarrow N+1$ jet transition and such that

- is sensitive also to radiation emitted collinear to any final state parton
- for one emission, it reduces to an effective transverse momentum relative to the emitter parton in any collinear limit
- longitudinal boost invariant by inspection

The $k_{T}^{\text {ness }}$ variable takes its name from the k_{T} clustering algorithm and is defined via a recursive procedure
For one extra emission, we define $k_{T}^{\text {ness }}$ as

$$
k_{T}^{\text {ness }}=\min _{i, j \in \mathscr{F}_{N+1}}\left\{d_{i B}, d_{i j}\right\}, \quad d_{i B}=k_{T}^{i}, \quad d_{i j}=\min \left(k_{T}^{i}, k_{T}^{i}\right) \Delta R_{i j} / D
$$

according to the distances of the k_{T} jet algorithm.
We can generalise the definition to all-order emissions in a recursive way:

1. run the k_{T}-algorithm up to a configuration \mathscr{F}_{N+1} with $\mathrm{N}+1$ jets
2. apply the above definition of $k_{T}^{\text {ness }}$

$k_{T}^{\text {ness }}$: definition

[Buonocore, Grazzini, Haag, LR, Savoini]
$k_{T}^{\text {ness }}$ is by construction infrared safe and global and in the $\mathbf{0}$-jet case it is similar to the p_{T}^{J} observable.
Its definition can be modified in a such way that in the 0 -jet case $k_{T}^{\text {ness }}$ is similar to q_{T}, i.e. an observable which displays azimuthal cancellation. In order to do so, the recoil of the beam must be taken into account

We have computed the singular structure in the limit $k_{T}^{\text {ness }} \rightarrow 0$ at NLO to construct a non-local subtraction

$$
d \hat{\sigma}_{\mathrm{NLO}}^{\mathrm{F}+\mathrm{N} j \mathrm{jets}+\mathrm{X}}=\mathscr{H}_{\mathrm{NLO}}^{\mathrm{F}+\mathrm{N} j \text { jets }} \otimes d \hat{\sigma}_{\mathrm{LO}}^{\mathrm{F}+\mathrm{N} j \mathrm{jets}}+\left[d \hat{\sigma}_{\mathrm{LO}}^{\mathrm{F}+(\mathrm{N}+1) \mathrm{jets}}-d \hat{\sigma}_{\mathrm{NLO}}^{\mathrm{CT}, \mathrm{~F}+\mathrm{Njets}}\right]
$$

Computation of the relevant coefficients proceeds by identifying singular regions and removing the double counting

Radius used to define k_{t}-distances
Structure of the counterterm remarkably simple

$$
\begin{aligned}
\hat{\sigma}_{\mathrm{NLO} a b}^{\mathrm{CT}, \mathrm{~F}+\mathrm{Njets}}=\frac{\alpha_{s}}{\pi} \frac{d k_{t}^{\text {ness }}}{k_{t}^{\text {ness }}}\{ & {\left[\ln \frac{Q^{2}}{\left(k_{t}^{\text {ness }}\right)^{2}} \sum_{\alpha} C_{\alpha}-\sum_{\alpha} \gamma_{\alpha}-\sum_{i} C_{i} \ln \left(D^{2}\right)-\sum_{\alpha \neq \beta} \mathbf{T}_{\alpha} \cdot \mathbf{T}_{\beta} \ln \left(\frac{2 p_{\alpha} \cdot p_{\beta}}{Q^{2}}\right)\right] \times \quad \gamma_{q}=3 C_{F} / 2 } \\
& \left.\delta_{a c} \delta_{b d} \delta\left(1-z_{1}\right) \delta\left(1-z_{2}\right)+2 \delta\left(1-z_{2}\right) \delta_{b d} P_{c a}^{(1)}\left(z_{1}\right)+2 \delta\left(1-z_{1}\right) \delta_{a c} P_{d b}^{(1)}\left(z_{2}\right)\right\} \otimes d \hat{\sigma}_{\text {LO } c d}^{\mathrm{F}+\mathrm{Njets}}
\end{aligned}
$$

\mathscr{H} contains the finite remainder from the cancellation of singularities of real and virtual origin, and the finite contributions embedded in beam (same as those of p_{T}^{J} or q_{T}), jet and soft functions (which we computed)

Phenomenological application: $H+j$ production

We have implemented our calculation first to $H+j$ production. Amplitudes from MCFM
We set the parameter $D=1$ and we require $p_{T}^{j}>30 \mathrm{GeV}$.
We compare our result with a $\mathbf{1}$-jettiness calculation for the same process, which we implemented in MCFM

$$
r=\mathscr{T}_{1} / \sqrt{m_{H}^{2}+\left(p_{T}^{j}\right)^{2}} \quad r=k_{T}^{\text {ness }} / \sqrt{m_{H}^{2}+\left(p_{T}^{j}\right)^{2}}
$$

Phenomenological application: $H+j$ production

We have implemented our calculation first to $H+j$ production. Amplitudes from MCFM
We set the parameter $D=1$ and we require $p_{T}^{j}>30 \mathrm{GeV}$.
We compare our result with a $\mathbf{1}$-jettiness calculation for the same process, which we implemented in MCFM

$$
r=\mathscr{T}_{1} / \sqrt{m_{H}^{2}+\left(p_{T}^{j}\right)^{2}} \quad r=k_{T}^{\text {ness }} / \sqrt{m_{H}^{2}+\left(p_{T}^{j}\right)^{2}}
$$

Faster convergence, power corrections compatible with purely linear behaviour

Excellent control of the NLO correction

Phenomenological application: $Z+2 j$ production

We also considered a process with a more complex final state with a non-trivial colour structure
Our implementation uses colour-correlated amplitudes from $\underset{\text { [Buc }}{\mathrm{OL}}$
[Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, Zhang, Zoller]
In this case we set the parameter $D=0.1$ and we require $p_{T}^{j}>30 \mathrm{GeV}$.

Power corrections exhibit linear behaviour in all partonic channels

Control of the NLO correction at the few percent level

Phenomenological application: $Z+2 j$ production

We also considered a process with a more complex final state and a non-trivial colour structure
Our implementation uses colour-correlated amplitudes from OL
In this case we set the parameter $D=0.1$ and we require $p_{T}^{j}>30 \mathrm{GeV}$.

Stability with respect to hadronisation and MPI

We have generated a sample of LO events for $Z+j$ with the POWHEG and showered them with PYTHIA8

We compare the impact of hadronisation and MPI on $k_{T}^{\text {ness }}$

The distribution has a peak at $\sim 15 \mathrm{GeV}$, which remain stable upon hadronisation and MPI

Effect of hadronisation marginal, MPI makes the distribution somewhat harder

Compared to 1 -jettiness, effects are much reduced

$k_{T}^{\text {ness }}:$ NNLO

Extending the calculation beyond NLO requires the availability of new ingredients:

- Two-loop beam functions
- Two-loop jet function
- Two loop soft function

$k_{T}^{\text {ness }}:$ NNLO

Extending the calculation beyond NLO requires the availability of new ingredients:

- Two-loop beam functions

Available from p_{T}^{J} / q_{T} resummation

- Two-loop jet function
- Two loop soft function

$k_{T}^{\text {ness }}:$ NNLO

Extending the calculation beyond NLO requires the availability of new ingredients:

- Two-loop beam functions
- Two-loop jet function

Need to be computed for our observable

- Two loop soft function

$k_{T}^{\text {ness }}:$ NNLO

Extending the calculation beyond NLO requires the availability of new ingredients:

- Two-loop beam functions
- Two-loop jet function
- Two loop soft function

First channel that can be checked is $g g$ channel in $Z+j, W+j$ production at NNLO

$k_{T}^{\text {ness }}: \mathbf{N N L O}$

Extending the calculation beyond NLO requires the availability of new ingredients:

- Two-loop beam functions
- Two-loop jet function
- Two loop soft function

First channel that can be checked is $g g$ channel in $Z+j, W+j$ production at NNLO

Only two-loop ingredient required for this process should be the two-loop beam functions

$k_{T}^{\text {ness }}:$ NNLO

Excellent agreement with a local NNLO calculation (thanks Xuan Chen \& NNLOJET for providing results)
Non trivial check of the factorization properties of the observable and hints on its all-order structure
Non-trivial dependence of the power corrections as a function of the radius parameter D

Case study: $e^{+} e^{-} \rightarrow 2 j+X$

Simplest possible process with only one FSR dipole configuration at the Born level (FSR analog of the q_{T} for color singlet production)

Consider resolution variables with different scalings in the soft/collinear limit

$$
X \sim k_{T}^{a} e^{-b|\eta|}
$$

Study behaviour of power corrections for different choices of a, b

Case study: $e^{+} e^{-} \rightarrow 2 j+X$

$$
X \sim k_{T}^{a} e^{-b|\eta|}
$$

- Case $a=1, b=1$: thrust τ_{2} is a viable resolution variable

By an analytical computation we find a logarithmic power correction (as expected)

$$
\sigma_{\mathrm{LPC}}=\frac{\alpha_{s}}{2 \pi} C_{F} \sigma_{\mathrm{LO}}\left(4 r_{\mathrm{cut}} \log \left(r_{\mathrm{cut}}\right)+14 r_{\mathrm{cut}}\right)
$$

Case study: $e^{+} e^{-} \rightarrow 2 j+X$

$$
X \sim k_{T}^{a} e^{-b|\eta|}
$$

- Case $a=1, b=0: y_{23}$ is a viable resolution variable

Naively, one may expect a quadratic leading power correction as for q_{T}
Instead, by an analytical computation for the inclusive y_{23} jet rate we find that it is linear (but not log-enhanced)

$$
\sigma_{\mathrm{LPC}}=\frac{\alpha_{s}}{2 \pi} C_{F} \sigma_{\mathrm{LO}} 4\left[2 \sinh ^{-1}(1)-4 \sqrt{2}\right] r_{\mathrm{cut}}
$$

Case study: $e^{+} e^{-} \rightarrow 2 j+X$

$$
X \sim k_{T}^{a} e^{-b|\eta|}
$$

- Case $a=1, b=0: y_{23}$ is a viable resolution variable

Naively, one may expect a quadratic leading power correction as for q_{T}
Instead, by an analytical computation for the inclusive y_{23} jet rate we find that it is linear (but not log-enhanced)

$$
\sigma_{\mathrm{LPC}}=\frac{\alpha_{s}}{2 \pi} C_{F} \sigma_{\mathrm{LO}} 4\left[2 \sinh ^{-1}(1)-4 \sqrt{2}\right] r_{\mathrm{cut}}
$$

Origin can be traced to a soft-wide angle contribution which does not completely cancel for color conservation and color coherence
Define a subtracted current which embeds the pure soft-wide angle contribution

$$
\begin{aligned}
J_{\mathrm{sub}}^{2} & =-T_{1} \cdot T_{2} \frac{p_{1} \cdot p_{2}}{p_{1} \cdot k p_{2} \cdot k} \Theta\left(r_{\mathrm{cut}}-\min \left(d_{1 k}, d_{2 k}\right)\right)-T_{1}^{2} \frac{p_{1} \cdot p_{2}}{p_{1} \cdot k\left(p_{1}+p_{2}\right) \cdot k} \Theta\left(r_{\mathrm{cut}}-d_{1 k}\right)-T_{2}^{2} \frac{p_{1} \cdot p_{2}}{p_{2} \cdot k\left(p_{1}+p_{2}\right) \cdot k} \Theta\left(r_{\mathrm{cut}}-d_{2 k}\right) \\
& \equiv-T_{1} \cdot T_{2} \omega_{12} \Theta\left(r_{\mathrm{cut}}-\min \left(d_{1 k}, d_{2 k}\right)\right)-T_{1}^{2} \omega_{1} \Theta\left(r_{\mathrm{cut}}-d_{1 k}\right)-T_{2}^{2} \omega_{2} \Theta\left(r_{\mathrm{cut}}-d_{2 k}\right) \neq 0
\end{aligned}
$$

despite the fact that $\omega_{12}=\omega_{1}+\omega_{2}$ and $2 T_{1} \cdot T_{2}=-\left(T_{1}^{2}+T_{2}^{2}\right)$

Case study: $e^{+} e^{-} \rightarrow 2 j+X$

$$
X \sim k_{T}^{a} e^{-b|\eta|}
$$

- Case $a=1, b=0$

We can however define a variable that is symmetric with respect to the two collinear directions, as q_{T} for IS collinear radiation. At NLO, we can introduce

$$
q_{T}^{F S R}=\sqrt{2 \frac{p_{1} \cdot k p_{2} \cdot k}{p_{1} \cdot p_{2}}}
$$

which corresponds to the relative transverse momentum of the radiation k with respect to the quark-anti quark axis in the frame in which they are back-to-back

Leading power correction becomes quadratic

$$
\sigma_{\mathrm{LPC}}=\frac{\alpha_{s}}{2 \pi} C_{F} \sigma_{\mathrm{LO}} \mathcal{O}\left(r_{\mathrm{cut}}^{2}\right)
$$

Conclusions

- Factorisation and resummation properties of the observables used in non-local subtraction methods provide a systematic path to reach higher-order accuracy in fixed-order computations
- The size of the residual power corrections below the slicing cutoff constitute a challenge in non-local subtraction methods
- The use of transverse observables in slicing approaches appears advantageous due to good scaling properties of the power corrections and to facilitate NNLO+PS matching thanks to the relation with the shower ordering variable
- We explored transverse variables in multi jet production. We defined a new variables, k_{T}-ness, which captures the singular structure of processes with jets and we computed the relevant ingredients to construct a subtraction at NLO for processes with N jets
- Computation of α_{s}^{2} ingredients (jet, soft functions) required to reach NNLO accuracy
- We studied transverse variables in $e^{+} e^{-} \rightarrow 2$ jets $+X$ at NLO and we investigated their scaling properties

Backup

Jet resolution variables and NNLO+PS

- $p_{T}^{\text {veto }}, q_{T}, \tau_{0}$ are three well known variables able to inclusively describe initial-state radiation
- The knowledge of the all-order structure of resolution variables makes them suitable for NNLO+PS event generators
- $q_{T}:$ UNNLOPS,
- $\tau_{0}:$ GENEVA
[Alioli, Bauer, Berggren, Tackmann, Walsh]

MiNNLOps
[Nason, Monni, Re, Wiesemann, Zanderighi]
recently extended to q
[Alioli, Bauer, Broggio, Gavardi, Kallweit, Lim, Nagar, Napoletano, LR]

Predictiveness of resummed predictions affected by corrections of NP origin (hadronisation, MPI). Spectrum in q_{T} mildly affected, large corrections due to MPI in the case of τ_{0}

