SMEFT: selected results & open questions

Ilaria Brivio

University of Zurich & Università di Bologna

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

SMEFT

Standard Model Effective Field Theory: The EFT constructed with **Standard Model** field & symmetries

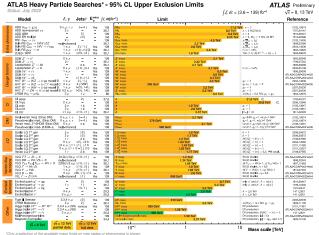
$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda} \mathcal{L}_{5} + \frac{1}{\Lambda^{2}} \mathcal{L}_{6} + \frac{1}{\Lambda^{3}} \mathcal{L}_{7} + \frac{1}{\Lambda^{4}} \mathcal{L}_{8} + \dots$$
$$\mathcal{L}_{d} = \sum_{i} C_{i} \mathcal{O}_{i}^{(d)} \qquad \qquad C_{i} = \text{Wilson coefficients}$$
$$\mathcal{O}_{i}^{(d)} = \text{gauge-invariant operators}$$

At each order, $\mathcal{O}_i^{(d)}$ form a complete, non-redundant **basis**

SMEFT describes any nearly-decoupled ($\Lambda \gg v$) BSM physics with "good" analyticity/geometry properties in the scalar sector

Ilaria Brivio (UZH & UniBo)

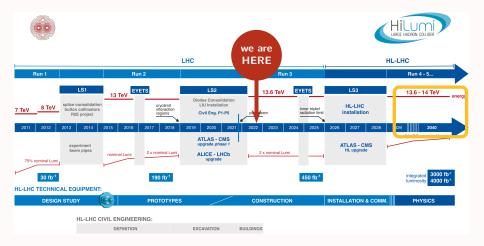
new physics seems indeed nearly decoupled

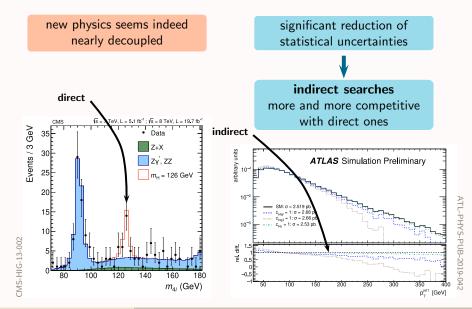


"Only a selection of the available mass limits on new states or phenomena is she + Small-radius (lama-radius) late are devoted by the latter (/).

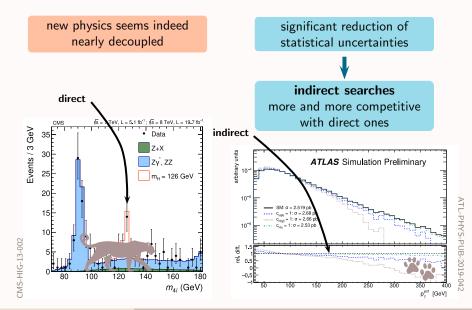
Ilaria Brivio (UZH & UniBo)

new physics seems indeed nearly decoupled significant reduction of statistical uncertainties

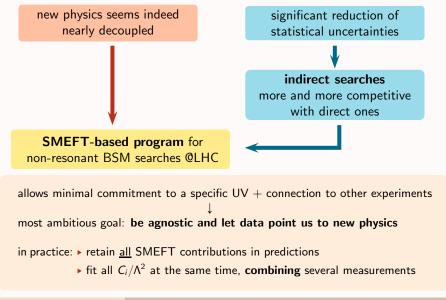




Ilaria Brivio (UZH & UniBo)

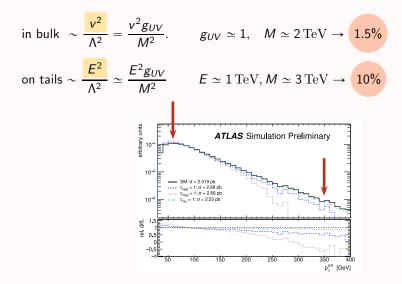


Ilaria Brivio (UZH & UniBo)



Two challenges for the bottom-up SMEFT program

A. being sensitive to indirect BSM effects



Ilaria Brivio (UZH & UniBo)

Two challenges for the bottom-up SMEFT program

A. being sensitive to indirect BSM effects

in bulk
$$\sim \frac{v^2}{\Lambda^2} = \frac{v^2 g_{UV}}{M^2}$$
. $g_{UV} \simeq 1$, $M \simeq 2 \text{ TeV} \rightarrow 1.5\%$
on tails $\sim \frac{E^2}{\Lambda^2} \simeq \frac{E^2 g_{UV}}{M^2}$ $E \simeq 1 \text{ TeV}$, $M \simeq 3 \text{ TeV} \rightarrow 10\%$

- B. making sure that, if we observe a deviation, we interpret it correctly needs:
 - retaining <u>all relevant contributions</u>: all operators, NLO corrections...
 - handling many parameters in predictions and fits
 - understanding the theory structure
 - correct understanding of uncertainties and correlations
 - systematic mapping to BSM models

Where are we? State-of-the-art SMEFT fits

combine observables in

EW[EWPO + diboson]Higgs[prod + decay]top $[\bar{t}t + \bar{t}tV + decay]$

- constrain 30 35 parameters simultaneously. [LHC target ~ 50]
- employ diverse fitting techniques...

frequentist/bayesian/replica model statistics, various uncertainty modelings, markov chains, nested sampling. . .

...and methods for presenting results

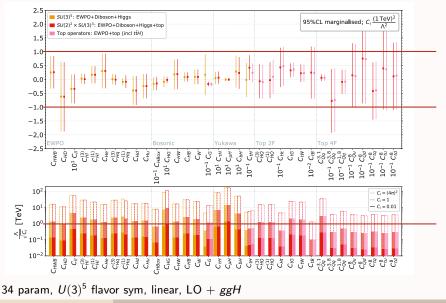
linear vs linear+quadratics, LO vs NLO, individual vs marginalised/profiled, Fisher information, Principal component analysis...

- ► including enough measurements to constrain all parameters is solved except for some degeneracies in 4-fermion operators → flavor physics
- ► sensitivity: Higgs/EW parameters $\Lambda \gtrsim 1 2$ TeV most Top parameters less constrained

Ilaria Brivio (UZH & UniBo)

Higgs + EW + Top combinations

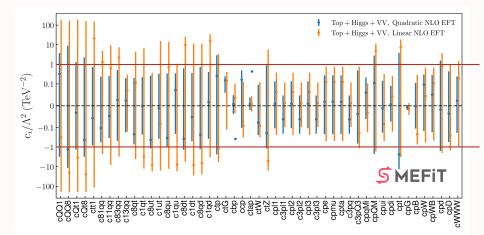
Ellis, Madigan, Mimasu, Sanz, You 2012.02779



Ilaria Brivio (UZH & UniBo)

Higgs + EW + Top combinations

Ethier, Maltoni, Mantani, Nocera, Rojo, Slade, Vryonidou, Zhang 2105.00006

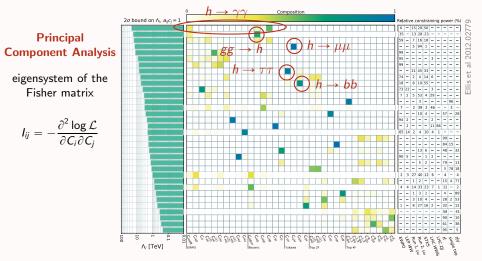


50 param (36 indep.), $U(2)^2 imes U(3) imes U(1)^3$ flavor sym, linear+quadratic, NLO QCD

Ilaria Brivio (UZH & UniBo)

Directions in the fit space

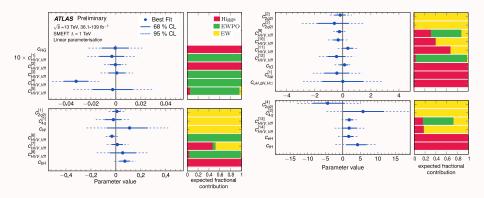
 \rightarrow with linear SMEFT predictions, fit can be decomposed into uncorrelated constraints \rightarrow very large hierarchies between bounds



Global fits within experiments

a few combined analyses already performed! improving quickly

- ► ATLAS: so far mostly Higgs and EW ATLAS-CONF-2021-053, ATL-PHYS-PUB-2021-010, ATL-PHYS-PUB-2022-037...
- ► CMS: so far mostly Top TOP-19-001, TOP-21-003...
- cross-experiment "fitting exercise" ongoing under EFT WG



What's missing for a successful SMEFT program?

[personal/pragmatic point of view, not attempting to make a complete list. feel free to disagree!]

A =for being sensitive

- B = for interpreting deviations correctly
- 0. (experimentally established anomalies)
- 1. A reduction of uncertainties on SM predictions + systematics
- 2. A B streamline treatment & reduction of EFT-born uncertainties
- 3. B correct treatment of correlations \rightarrow involvement of experiments

Bißmann, Erdmann, Grunwald, Hiller, Kröninger 1912.06090

- 4. B including SMEFT beyond ME: PDF, PS, acceptances → Maria and Uli's talks Carrazza et al 1905.05215, Greljo et al. 2104.02723, Iranipour,Ubiali 2201.07240 Goldouzian et al 2012.06872, Haisch et al 2204.00663, ATL-PHYS-PUB-2022-037
- 5. B more refined process treatment: exploit differential info, target CP, flavor...
- 6. B handling & understanding \sim 50-dimensional likelihoods

Ilaria Brivio (UZH & UniBo)

SMEFT uncertainties: from MC simulations

$$\sigma_{SMEFT} = \sigma_{SM} \left[1 + a_i C_i + b_{ij} C_i C_j + \dots \right]$$

 a_i, b_{ij} typically determined at tree/1-loop order with MC simulations

- → important to have **precise determinations**! cancellations must be reproduced, σ_{SMEFT} must be positive $\forall C_i...$
- → uncertainties mainly arise from phase space integration. limitations in N_{events} due to need to simulate many (easily O(100)) signal components

SMEFT uncertainties: from MC simulations

$$\sigma_{SMEFT} = \sigma_{SM} \left[1 + a_i C_i + b_{ij} C_i C_j + \dots \right]$$

 a_i, b_{ij} typically determined at tree/1-loop order with MC simulations

- → important to have **precise determinations**! cancellations must be reproduced, σ_{SMEFT} must be positive $\forall C_i...$
- → uncertainties mainly arise from phase space integration. limitations in N_{events} due to need to simulate many (easily O(100)) signal components

via direct simulation

MG5 allows to simulate individual SMEFT components

- 🖒 phase sp. integration covers all relevant regions
- ♥ not exactly the same across components pure interference treatment unclear
- \rightarrow potentially large Δ_{stat} in differences/ratios \rightarrow relations among components not enforced

via reweighting

$$w_{SMEFT} = w_0 \frac{|\mathcal{M}_{SMEFT}|^2}{|\mathcal{M}_0|^2}$$

 $\mathbf{\dot{O}}$ SMEFT/SM ratios reproduced exactly event-by-event

 ${\bf \nabla}$ very large ${\cal M}$ ratios amplify statistical errors

assumes "factorization" of phase-sp. integration. only true for $N_{\rm events} \rightarrow \infty$ \rightarrow result can depend on initial sample

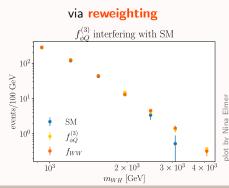
SMEFT uncertainties: from MC simulations

$$\sigma_{SMEFT} = \sigma_{SM} \left[1 + a_i C_i + b_{ij} C_i C_j + \dots \right]$$

 a_i, b_{ij} typically determined at tree/1-loop order with MC simulations

- → important to have **precise determinations**! cancellations must be reproduced, σ_{SMEFT} must be positive $\forall C_{i...}$
- \rightarrow uncertainties mainly arise from phase space integration. limitations in N_{events} due to need to simulate many (easily O(100)) signal components

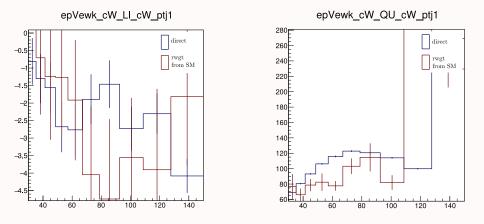
via direct simulation



Examples

plots courtesy of G. Boldrini

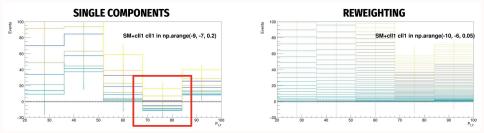
 $p_T^{j_1}$ for $pp \rightarrow jjjje^+\nu_e$ generated with 10⁶ events for direct, 2 × 10⁶ for rwgt (before cuts)



Examples

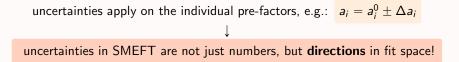
plots courtesy of G. Boldrini

$$p_T^{l_2}$$
 for $pp
ightarrow e^+ e^- \mu^+ \mu^-$, generated with $N_{events} = \mathcal{O}(10^6)$

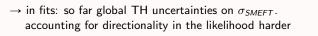


A general remark on SMEFT uncertainties

$$\sigma_{SMEFT} = \sigma_{SM} \left[1 + a_i C_i + b_{ij} C_i C_j + \dots \right]$$



this effect is very relevant in global fits (B)



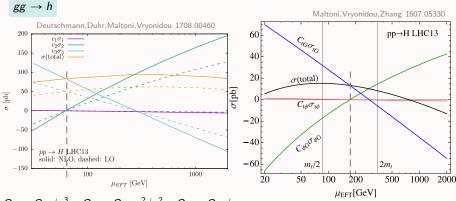
→ including proper errors could be useful to account for operator-dependent effects C_1

Scale dependence

SMEFT operators run and mix

(Alonso), Jenkins, Manohar, Trott '13

- \rightarrow bounds are put on $C(\mu_0)$ defined at a certain scale μ_0 .
- \rightarrow residual scale dependence present, depends on process and operator
- \rightarrow typically smaller in (absolute) size for NLO calculations



 $O_1 = O_{t\phi}/y_t^3$ $O_2 = O_{\phi G}g_s^2/y_t^2$ $O_3 = O_{tG}/y_t$

Scale dependence

SMEFT operators run and mix

(Alonso), Jenkins, Manohar, Trott '13

- \rightarrow bounds are put on $C(\mu_0)$ defined at a certain scale μ_0 .
- \rightarrow residual scale dependence present, depends on process and operator
- \rightarrow typically smaller in (absolute) size for NLO calculations

Cullen, Peciak, Scott 1904,06358

$$\frac{\Gamma_{SMEFT}^{LO}(m_{H})}{\Gamma_{SM}^{LO}(m_{H})} = \Delta^{\text{LO}}(m_{H}, m_{H}) = (1 \pm 0.08) + \frac{(\bar{v}^{(\ell)})^{2}}{\Lambda_{\text{NP}}^{2}} \left\{ (3.74 \pm 0.36)\tilde{C}_{HWB} + (2.00 \pm 0.21)\tilde{C}_{H\square} - (1.41 \pm 0.07)\frac{\bar{v}^{(\ell)}}{m_{b}^{(\ell)}}\tilde{C}_{bH} + (1.24 \pm 0.14)\tilde{C}_{HD} + (1.24 \pm 0.14)\tilde{C}$$

[uncertainties from $\times 2$ variations of both SM and C scales. \tilde{C} defined at $\mu_0 = m_H$]

 $h \rightarrow \bar{b}b$

Scale dependence

SMEFT operators run and mix

(Alonso), Jenkins, Manohar, Trott '13

- \rightarrow bounds are put on $C(\mu_0)$ defined at a certain scale μ_0 .
- \rightarrow residual scale dependence present, depends on process and operator
- \rightarrow typically smaller in (absolute) size for NLO calculations

$$\begin{split} h \to \tilde{b}b & \quad \text{Cullen, Pecjak, Scott 1904.06358} \\ \Delta^{\text{NLO}}(m_H, m_H) = 1.13^{+0.01}_{-0.04} + \frac{(\bar{v}^{(\ell)})^2}{\Lambda_{\text{NP}}^2} \bigg\{ \left(4.16^{+0.05}_{-0.14} \right) \tilde{C}_{HWB} + \left(2.40^{+0.04}_{-0.09} \right) \tilde{C}_{H\Box} \\ & \quad + \left(-1.73^{+0.04}_{-0.03} \right) \frac{\bar{v}^{(\ell)}}{m_b^{(\ell)}} \tilde{C}_{bH} + \left(1.33^{+0.01}_{-0.04} \right) \tilde{C}_{HD} + \left(2.75^{+0.49}_{-0.48} \right) \tilde{C}_{HG} \\ & \quad + \left(-0.12^{+0.04}_{-0.01} \right) \tilde{C}_{Hq}^{(3)} + \left(-0.08^{+0.05}_{-0.01} \right) \tilde{C}_{Ht} + \left(0.06^{+0.00}_{-0.05} \right) \tilde{C}_{Hq}^{(1)} \\ & \quad + \left(0.03^{+0.02}_{-0.01} \right) \frac{\bar{v}^{(\ell)}}{m_b^{(\ell)}} \tilde{C}_{qtqb}^{(1)} + \left(0.00^{+0.07}_{-0.04} \right) \frac{\tilde{C}_{tG}}{g_s} + \left(-0.03^{+0.01}_{-0.01} \right) \tilde{C}_{tH} \\ & \quad + \left(0.03^{+0.01}_{-0.01} \right) \tilde{C}_{HW} + \left(-0.01^{+0.01}_{-0.00} \right) \tilde{C}_{tW} + \ldots \bigg\}. \end{split}$$

[uncertainties from $\times 2$ variations of both SM and C scales. \tilde{C} defined at $\mu_0 = m_H$]

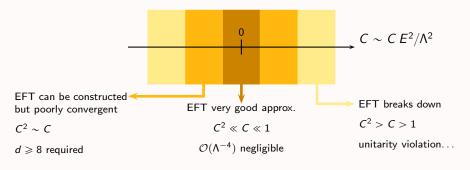
in loops ~>> Eleni and Darren's talk

status: several processes at NLO QCD (1-loop automated) a few to NLO EW: $\mu \rightarrow e\gamma$, $h \rightarrow VV$, $\bar{f}f$, EWPO Pruna, Signer, Hartmann, Trott, Passarino, Dawson, Giardino, Pecjak, Scott, Dedes... first ex. at NNLO+PS: Vh, $h \rightarrow \bar{b}b$ Haisch et al 2204.00663 \rightsquigarrow UII's talk

in loops ~> Eleni and Darren's talk

status: several processes at NLO QCD (1-loop automated) a few to NLO EW: $\mu \rightarrow e\gamma$, $h \rightarrow VV$, $\bar{f}f$, EWPO Pruna, Signer, Hartmann, Trott, Passarino, Dawson, Giardino, Pecjak, Scott, Dedes... first ex. at NNLO+PS: Vh, $h \rightarrow \bar{b}b$ Haisch et al 2204.00663 \rightsquigarrow UII's talk

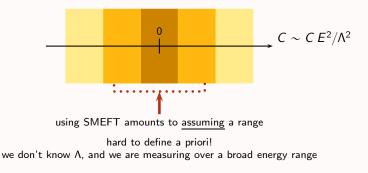
in the EFT expansion \leftrightarrow EFT validity



in loops ~> Eleni and Darren's talk

status: several processes at NLO QCD (1-loop automated) a few to NLO EW: $\mu \rightarrow e\gamma$, $h \rightarrow VV$, $\bar{f}f$, EWPO Pruna, Signer, Hartmann, Trott, Passarino, Dawson, Giardino, Pecjak, Scott, Dedes... first ex. at NNLO+PS: Vh, $h \rightarrow \bar{b}b$ Haisch et al 2204.00663 \rightsquigarrow UII's talk

in the EFT expansion \leftrightarrow EFT validity



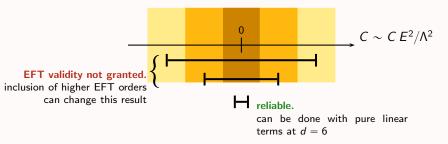
Ilaria Brivio (UZH & UniBo)

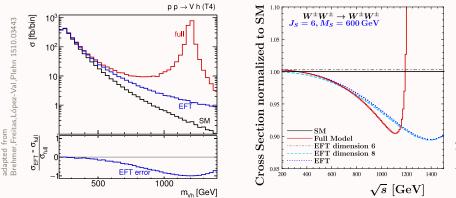
in loops ~> Eleni and Darren's talk

status: several processes at NLO QCD (1-loop automated) a few to NLO EW: $\mu \rightarrow e\gamma$, $h \rightarrow VV$, $\bar{f}f$, EWPO Pruna, Signer, Hartmann, Trott, Passarino, Dawson, Giardino, Pecjak, Scott, Dedes...first ex. at NNLO+PS: <math>Vh, $h \rightarrow \bar{b}b$ Haisch et al 2204.00663 \rightsquigarrow Uli's talk

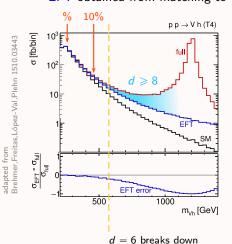
in the EFT expansion \leftrightarrow EFT validity

safe option: bounds self-consistency. measurements @LHC not always "good enough"



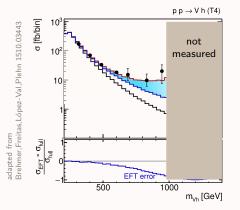


Impact of $d \ge 8$ operators



EFT obtained from matching to full model

EFT obtained from matching to full model



top-down: C_i fixed by matching \rightarrow EFT not valid in high-E region

bottom-up: fit C_i to data tends to make EFT match full result \rightarrow find wrong values of C_i

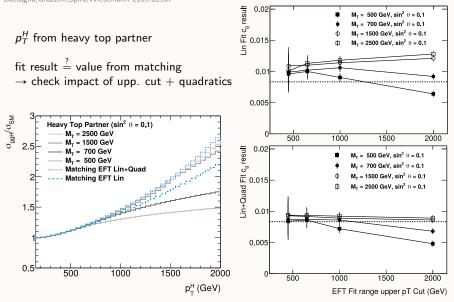
how to keep this into account?

sliding upper cut: Contino,Falkowski,Goertz, Grojean,Riva 1604.06444 uncertainty band: Trott et al 1508.05060,2007.00565,2106.13794, Hays,Martin,Sanz,Setford 1808.00442 Shepherd et al 1812.07575,1907.13160 compute at d=8 Boughezal, Mereghetti, Petriello 2106.05337 Dawson, (Fontes), Homiller, Sullivan 2110.06929, 2205.01561

Ilaria Brivio (UZH & UniBo)

Benchmarking these proposals: sliding upper cut

Battaglia, Grazzini, Spira, Wiesemann 2109.02987

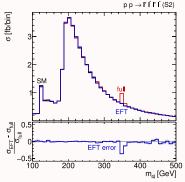


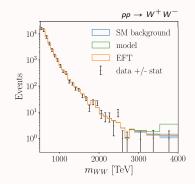
Ilaria Brivio (UZH & UniBo)

safe scenarios \leftrightarrow no energy growth \leftrightarrow small effects

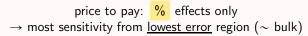
typical cases where d = 6 works well across the whole visible spectrum:

- ▶ observables w/o E dependence $(1 \rightarrow 2 \text{ decays})$
- BSM scenarios with very narrow and/or heavy states



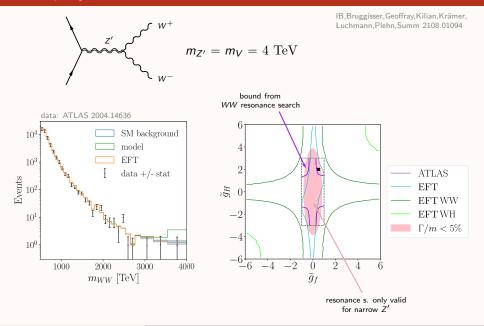


Brivio, Bruggisser, Geoffray, Kilian, Krämer, Luchmann, Plehn, Summ 2108.01094

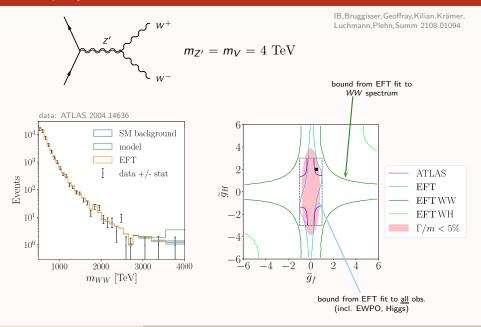


Ilaria Brivio (UZH & UniBo)

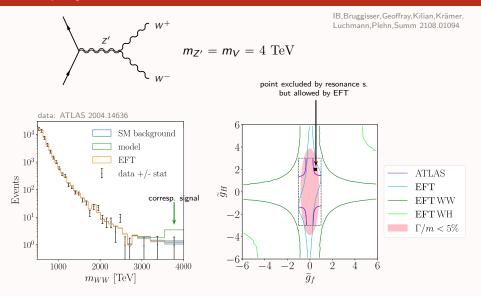
Interplay with direct searches



Interplay with direct searches



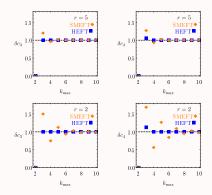
Interplay with direct searches

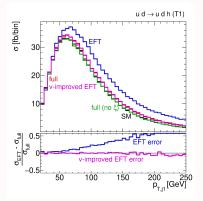


SMEFT or HEFT?

a component of the d = 6 vs model discrepancy can be removed by reabsorbing higher powers of v within d = 6 coefficients instead of leaving them to $d \ge 8$

conceptually similar to using **HEFT** instead





Brehmer, Freitas, López-Val, Plehn 1510.03443

which EFT is most convenient?

Ilaria Brivio (UZH & UniBo)

Summary

SMEFT program:

global, agnostic search for NP signals in precision measurements

- ▶ 2 challenges: sensitivity and accurate interpretation
- Enormous improvements made in past decade.
 Achieved global H+EW+Top fits with NLO QCD accuracy.
 Many processes studied, sensitivity reaching into multi-TeV range.
 Experiments getting involved.
- Some (technical) challenges still ahead.
 From EFT point of view, not yet streamlined: inclusion of EFT-specific uncertainties, especially from higher EFT orders
- would **HEFT** be more suitable in poorly convergent cases?
- Interplay with direct searches worth exploring: complementary regimes

Backup slides

\mathcal{L}_6 : the Warsaw basis

Grzadkowski, Iskrzynski, Misiak, Rosiek 1008.4884

X ³		$arphi^6 ext{ and } arphi^4 D^2$		$\psi^2 arphi^3$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{arphi}	$(arphi^\daggerarphi)^3$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(arphi^{\dagger}arphi)(ar{q}_{p}u_{r}\widetilde{arphi})$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger} D^{\mu} \varphi \right)^{\star} \left(\varphi^{\dagger} D_{\mu} \varphi \right)$	$Q_{d\varphi}$	$(arphi^\dagger arphi) (ar q_p d_r arphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				
$X^2 \varphi^2$		$\psi^2 X arphi$		$\psi^2 arphi^2 D$	
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu u}G^{A\mu u}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$
$Q_{\varphi \widetilde{G}}$	$arphi^\dagger arphi \widetilde{G}^A_{\mu u} G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q^{(3)}_{arphi l}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\overline{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
$Q_{\varphi W}$	$arphi^\dagger arphi W^I_{\mu u} W^{I\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu u} T^A u_r) \widetilde{\varphi} G^A_{\mu u}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{\varphi \widetilde{W}}$	$arphi^{\dagger}arphi \widetilde{W}^{I}_{\mu u}W^{I\mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu u} u_r) \tau^I \widetilde{\varphi} W^I_{\mu u}$	$Q^{(1)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu u}B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu u} u_r) \widetilde{\varphi} B_{\mu u}$	$Q^{(3)}_{arphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$Q_{\varphi \widetilde{B}}$	$arphi^\dagger arphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu u} T^A d_r) \varphi G^A_{\mu u}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{\varphi WB}$	$\varphi^{\dagger} \tau^{I} \varphi W^{I}_{\mu \nu} B^{\mu \nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu u} d_r) \tau^I \varphi W^I_{\mu u}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$arphi^\dagger au^I arphi \widetilde{W}^I_{\mu u} B^{\mu u}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu u} d_r) \varphi B_{\mu u}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

Ilaria Brivio (UZH & UniBo)

\mathcal{L}_6 : the Warsaw basis

Grzadkowski, Iskrzynski, Misiak, Rosiek 1008.4884

$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$		
Q_{ll}	$(ar{l}_p \gamma_\mu l_r) (ar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(ar{e}_p \gamma_\mu e_r) (ar{e}_s \gamma^\mu e_t)$	Q_{le}	$(ar{l}_p \gamma_\mu l_r) (ar{e}_s \gamma^\mu e_t)$	
$Q_{qq}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(ar{u}_p \gamma_\mu u_r)(ar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(ar{l}_p \gamma_\mu l_r) (ar{u}_s \gamma^\mu u_t)$	
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(ar{d}_p \gamma_\mu d_r) (ar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(ar{l}_p \gamma_\mu l_r) (ar{d}_s \gamma^\mu d_t)$	
$Q_{lq}^{(1)}$	$(ar{l}_p \gamma_\mu l_r) (ar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(ar{e}_p \gamma_\mu e_r) (ar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(ar{q}_p \gamma_\mu q_r) (ar{e}_s \gamma^\mu e_t)$	
$Q_{lq}^{(3)}$	$(\bar{l}_p\gamma_\mu\tau^I l_r)(\bar{q}_s\gamma^\mu\tau^I q_t)$	Q_{ed}	$(ar{e}_p \gamma_\mu e_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(ar q_p \gamma_\mu q_r) (ar u_s \gamma^\mu u_t)$	
		$Q_{ud}^{(1)}$	$(ar{u}_p \gamma_\mu u_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$	
		$Q_{ud}^{(8)}$	$(ar{u}_p \gamma_\mu T^A u_r) (ar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{d}_s \gamma^\mu d_t)$	
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$	
$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-violating				
Q_{ledq}	$(ar{l}_p^j e_r) (ar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_p^{\alpha})^TCu_r^{\beta}\right]\left[(q_s^{\gamma j})^TCl_t^k\right]$			
$Q_{quqd}^{(1)}$	$(ar{q}_p^j u_r) arepsilon_{jk} (ar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(u_s^{\gamma})^T C e_t\right]$			
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	Q_{qqq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[(q_p^{\alpha j})^TCq_r^{\beta k}\right]\left[(q_s^{\gamma m})^TCl_t^n\right]$			
$Q_{lequ}^{(1)}$	$(ar{l}_p^j e_r) arepsilon_{jk} (ar{q}_s^k u_t)$	Q_{duu}	$arepsilon^{lphaeta\gamma}\left[(d_p^lpha)^T C u_r^eta ight]\left[(u_s^\gamma)^T C e_t ight]$			
$Q_{lequ}^{(3)}$	$(\bar{l}_{p}^{j}\sigma_{\mu u}e_{r})arepsilon_{jk}(\bar{q}_{s}^{k}\sigma^{\mu u}u_{t})$					

Ilaria Brivio (UZH & UniBo)