SMEFT in Monte Carlo Eleni Vryonidou University of Manchester

Workshop on Tools for High Precision LHC simulations Castle Ringberg, 31/10-4/11/22

SMEFT: What is it all about?

Effective Field Theory reveals high energy physics through precise measurements at low energy.

A ~model-independent way of searching for new physics!

Eleni Vryonidou

FCC BSM Physics Workshop

new

$$\mathbf{y} \qquad \mathcal{L}_{SM}(\phi) + \mathcal{L}_{dim6}(\phi) + \dots$$

EFT pathway to New Physics

Tools for High Precision LHC Simulations

E. Vryonidou

Introduction EFT interpretations spreading in top, Higgs and EW sectors

E. Vryonidou

Tools for High Precision LHC Simulations

in top, Higgs and EW sectors LHC EW Multiboson Subgroup

EFT in Higgs measurements **ATLAS CONF-2020-053 CMS PAS HIG-19-005**

E. Vryonidou

Issues and questions Ingredients for combined/global analyses?

Need to address:

- * (Choice of basis)
- * Choice of flavour assumption: 2499 operators
- * Choice of which operators to fit and which to ignore
- ***** Precision of predictions
- ***** Availability of tools

Basis and Flavour Basis

ATLAS CONF-2020-053

Warsaw basis (smeftsim & SMEFT@NLO implementations)

c.f.

CMS TOP-21-003

Warsaw basis (dim6top implementation)

Flavour assumption

	e.g. $Q_{Hu,pr} = (Hi\overleftarrow{D}_{\mu}H)(\bar{u}_{p\gamma})$	(μu_r)	tot	-
general	(C _{Hu}) _{pr}	9	2499	
<i>U</i> (3) ⁵	C _{Hu} δ _{pr}	1	~ 85	
$U(3)^2_{\ell,e} \times U(2)^3_{q,u,d}$	$C_{Hu} \delta_{pr}, p, r = 1, 2$	2	~ 180	
	C_{Ht} $p = r = 3$			

From I. Brivio

E. Vryonidou

CMS PAS HIG-19-005

SILH basis (HEL implementation)

ATLAS CONF-2020-053 CMS TOP-19-001

How to combine?

First attempts towards guidelines The LHC Top WG EFT note

Interpreting top-quark LHC measurements in the standard-model effective field theory

J. A. Aguilar Saavedra,¹ C. Degrande,² G. Durieux,³
F. Maltoni,⁴ E. Vryonidou,² C. Zhang⁵ (editors),
D. Barducci,⁶ I. Brivio,⁷ V. Cirigliano,⁸ W. Dekens,^{8,9} J. de Vries,¹⁰ C. Englert,¹¹
M. Fabbrichesi,¹² C. Grojean,^{3,13} U. Haisch,^{2,14} Y. Jiang,⁷ J. Kamenik,^{15,16}
M. Mangano,² D. Marzocca,¹² E. Mereghetti,⁸ K. Mimasu,⁴ L. Moore,⁴ G. Perez,¹⁷
T. Plehn,¹⁸ F. Riva,² M. Russell,¹⁸ J. Santiago,¹⁹ M. Schulze,¹³ Y. Soreq,²⁰
A. Tonero,²¹ M. Trott,⁷ S. Westhoff,¹⁸ C. White,²² A. Wulzer,^{2,23,24} J. Zupan.²⁵

Abstract

This note proposes common standards and prescriptions for the effective-field-theory interpretation of top-quark measurements at the LHC.

arXiv:1802.07237

E. Vryonidou

Tools for High Precision LHC Simulations

- Warsaw basis
- 3 scenarios with different flavour assumptions
- Constraints from LHC, EWPO, indirect constraints
- Public UFO implementations and benchmark results already given for LHC13

Separate discussion of FCNC

ons aints

Monte Carlo tools and validation A systematic effort to cross-validate different implementations Examples of implementations:

CERN-LPCC-2019-02

Proposal for the validation of Monte Carlo implementations of the standard model effective field theory

Gauthier Durieux¹ (ed.), Ilaria Brivio^{2,3} (ed.), Fabio Maltoni^{4,5} (ed. ex officio), Michael Trott² (ed. ex officio), Simone Alioli,⁶ Andy Buckley,⁷ Mauro Chiesa,⁸ Jorge de Blas,^{9,10} Athanasios Dedes,¹¹ Céline Degrande,⁴ Ansgar Denner,⁸ Christoph Englert,⁷ James Ferrando,¹² Benjamin Fuks,^{13,14} Peter Galler,⁷ Admir Greljo,¹⁵ Valentin Hirschi,¹⁶ Gino Isidori,¹⁷ Wolfgang Kilian,¹⁸ Frank Krauss,¹⁹ Jean-Nicolas Lang,¹⁷ Jonas Lindert,¹⁹ Michelangelo Mangano,¹⁵ David Marzocca,²⁰ Olivier Mattelaer,⁴ Kentarou Mawatari,²¹ Emanuele Mereghetti,²² David J. Miller,⁷ Ken Mimasu,⁴ Michael Paraskevas,²³ Tilman Plehn,³ Laura Reina,²⁴ Janusz Rosiek,²³ Jürgen Reuter,¹² José Santiago,²⁵ Kristaq Suxho,¹¹ Lampros Trifyllis,¹¹ Eleni Vryonidou,¹⁵ Christopher White,²⁷ Cen Zhang,^{28,29} Hantian Zhang¹⁷

arXiv:1906.12310

E. Vryonidou

Need for systematic comparison and validation see also LHC EFT WG efforts

- DIM6TOP is a UFO implementation of top-quark interactions following the conventions of the LHC top Working Group [3]. It is available at this url¹.
- SMEFTSIM is a complete UFO implementation of the Warsaw basis [4] of dimension-six operators [5]. It is available at this url².
- SMEFT@NLO is a UFO implementation, to next-to-leading order in QCD, of of CP- and $U(2)_q \times U(2)_u \times U(3)_d \times U(3)_l \times U(3)_e$ -conserving dimension-six interactions, available at this url³.
- SMEFTFR [6, 7] is a package generating Feynman rules, in FEYNRULES and UFO formats, for the dimension-six operators of the Warsaw basis [4] (or any subset), in unitary or linear R_{ξ} gauges, in terms of physical fields (mass eigenstates), for general flavour structures. It is available at this url⁴.
- HEL [8] is an implementation of dimension-six operators in the SILH basis [9] available at this url⁵.
- BSMC [10] is an implementation of dimension-six operators in the Higgs basis [11] associated with the ROSETTA package (here⁶). It is available at this url⁷.

SMEFT Monte Carlo Dim6top: arXiv:1802.07237

Warsaw basis: focusing on top interactions

Baseline flavour scenario singles out the 3rd generation

 $U(2)_q \times U(2)_u \times U(2)_d$

four heavy quarks	11 + 2 CPV
two light and two heavy quarks	14
two heavy quarks and bosons	9+6 CPV
two heavy quarks and two leptons	(8 + 3 CPV)

UFO also includes FCNC

Tree level Monte Carlo implementation of top interactions Widely used by the top community

E. Vryonidou

Tools for High Precision LHC Simulations

 $\times 3$ lepton flavours

SMEFTsim

	gene	ral	U	J35	MFV		top		topU31	
	all	CP	all	CP	all	CP	all	CP	all	CP
tot	2499	1149	85	25	120	-	275	71	182	53

Two possible input schemes (see Darren's talk):

 $\{\alpha_{em}, m_Z, G_F\}$ $\{m_W, m_Z, G_F\}$ flavour and input scheme: 10 model variants!

EFT corrections to propagators: linearised corrections

Tree-level but most general and flexible implementation, and very nice manual

Brivio, Jiang, Trott 1709.06492, Brivio 2012.11343

Tools for High Precision LHC Simulations

Warsaw basis with

various flavour assumptions

SMEFT Monte Carlo SMEFT@NLO

What's in this box? Warsaw basis operators Flavour assumption: $U(2)_{d} \times U(2)_{u} \times U(3)_{d} \times (U(1)_{l} \times U(1)_{e})^{3}$

Includes Higgs, top, gauge boson interactions **Conventions matching dim6top** m_w input scheme Limitations: CP conserving, no FCNC, just one flavour assumption Advantage: Loops/NLO

Degrande, Durieux, Maltoni, Mimasu, EV, Zhang arXiv:2008.11743

E. Vryonidou

Tools for High Precision LHC Simulations

What can SMEFT@NLO do? **Example processes**

Multi-boson production

quark-initiated

> p	р	>	W+	W-	QED=2	QCD=0	NP=2	[QCD]
> p	р	>	W+	Z	QED=2	QCD=0	NP=2	[QCD]
> p	р	>	Z	Z	QED=2	QCD=0	NP=2	[QCD]

loop-induced

> g g > W+ W-QED=2 QCD=2 NP=2 [QCD] > q q > Z Z QED=2 QCD=2 NP=2 [QCD] > g g > W+ W- Z QED=3 QCD=2 NP=2 [QCD] > g g > Z Z Z QED=3 QCD=2 NP=2 [QCD]

loop-induced

> g g > H QED=1 QCD=2 NP=2 [QCD] > g g > H H QED=2 QCD=2 NP=2 [QCD] > g g > H H H QED=3 QCD=2 NP=2 [QCD] > g g > H j QED=1 QCD=3 NP=2 [QCD]

Top quark production

>	e+ e	<u>)</u> –	>	t t~				QED=2	QCD=0	NP=2	[QCD]
>	рр	>	t	t~				QED=0	QCD=2	NP=2	[QCD]
>	рр	>	t	t~ h				QED=1	QCD=2	NP=2	[QCD]
>	рр	>	t	t~ Z				QED=1	QCD=2	NP=2	[QCD]
>	рр	>	t	t~ W	+			QED=1	QCD=2	NP=2	[QCD]
>	рр	>	t	W-		\$\$	t~	QED=1	QCD=1	NP=2	[QCD]
>	рр	>	t	₩— j		\$\$	t~	QED=1	QCD=2	NP=2	[QCD]
>	рр	>	t	j		\$\$	W-	QED=2	QCD=0	NP=2	[QCD]
>	рр	>	t	hј		\$\$	W-	QED=3	QCD=0	NP=2	[QCD]
>	рр	>	t	Zј		\$\$	W-	QED=3	QCD=0	NP=2	[QCD]
>	рр	>	t	аj		\$\$	W-	QED=3	QCD=0	NP=2	[QCD]

Degrande, Durieux, Maltoni, Mimasu, EV, Zhang arXiv:2008.11743

E. Vryonidou

NLO QCD for tree level processes Loop induced

http://feynrules.irmp.ucl.ac.be/wiki/SMEFTatNLO

Uncertainties in EFT predictions

- Missing Higher Orders in 1/Λ⁴
 - * squared dim-6 contributions
 - * double insertions of dim-6
 - * dim-8 contributions
- Missing Higher Orders in QCD a * EFT is a QFT, renormalisable $\mathcal{O}(\alpha_s, \alpha_{ew}) + \mathcal{O}\left(\frac{1}{\Lambda^2}\right) + \mathcal{O}$

· · /

and EW
order-by-order 1/
$$\Lambda^2$$

 $\left(\frac{\alpha_s}{\Lambda^2}\right) + O\left(\frac{\alpha_{ew}}{\Lambda^2}\right)$

Tools for High Precision LHC Simulations

Why NLO (or 1-loop) for SMEFT?

Higher orders in SMEFT bring:

- Accuracy *
- Precision *
- Improved sensitivity *

 - * Loop-induced new sensitivity.

* Accurate knowledge of the deviations (distribution shapes, correlations between observables, etc.) can be the key to disentangle them from the SM.

Accuracy and precision (1) **K-factors and shapes**

Degrande, Maltoni, Mimasu, EV, Zhang arXiv:1804.07773 Tools for High Precision LHC Simulations E. Vryonidou

ttH

	13 TeV	σ NLO	к
-	σ_{SM}	$0.507_{-0.048-0.000-0.008}^{+0.030+0.000+0.007}$	1.09
	$\sigma_{t\phi}$	$-0.062\substack{+0.006+0.001+0.001\\-0.004-0.001-0.001}$	1.13
	$\sigma_{\phi G}$	$0.872_{-0.123-0.035-0.016}^{+0.131+0.037+0.013}$	1.39
	σ_{tG}	$0.503^{+0.025+0.001+0.007}_{-0.046-0.003-0.008}$	1.07

$$\sigma = \sigma_{\rm SM} + \sum_{i} \frac{1 \text{TeV}^2}{\Lambda^2} C_i \sigma_i$$

Different K-factors for different operators, different from the SM

Maltoni, EV, Zhang arXiv:1607.05330

Accuracy and precision (2) Reduction of scale uncertainty

Deutschmann, Duhr, Maltoni, EV arXiv:1708.00460

E. Vryonidou

Tools for High Precision LHC Simulations

 $\sigma_i(2\text{TeV};\mu_{\text{BT}})/\sigma_i^{\text{LO}}(2\text{TeV})$

Comparison of exact NLO with LO improved by 1-loop RG running

Maltoni, EV, Zhang arXiv:1607.05330

Improved sensitivity (1) New operators opening up at NLO 4-heavy operators in top pair production

$$\mathcal{O}_{QQ}^{8} = (\bar{Q}\gamma^{\mu}T^{A}Q)(\bar{Q}\gamma_{\mu}T^{A}Q)$$

$$\mathcal{O}_{QQ}^{1} = (\bar{Q}\gamma^{\mu}Q)(\bar{Q}\gamma_{\mu}Q)$$

$$\mathcal{O}_{Qt}^{8} = (\bar{Q}\gamma^{\mu}T^{A}Q)(\bar{t}\gamma_{\mu}T^{A}t)$$

$$\mathcal{O}_{Qt}^{1} = (\bar{Q}\gamma^{\mu}Q)(\bar{t}\gamma_{\mu}t)$$

$$\mathcal{O}_{tt}^{1} = (\bar{t}\gamma^{\mu}t)(\bar{t}\gamma_{\mu}t)$$
Top pairs at NLO:

3

Degrande, Durieux, Maltoni, Mimasu, EV, Zhang arXiv:2008.11743

E. Vryonidou

Tools for High Precision LHC Simulations

Complimentary information to ttbb and 4top production

Improved sensitivity (2)

4-heavy operators in EWPO

E. Vryonidou

Dawson and Giardino arXiv: 2201.09887

New loop-induced sensitivity Competitive to 4top production

Improved sensitivity (3)

4-heavy operators in Higgs production

Alasfar, de Blas, Gröber arXiv:2202.02333

Again competitive with top fit bounds!

E. Vryonidou

More loop-induced sensitivities Top pair production sensitivity to EW top couplings

EW corrections to top pair production:

E. Vryonidou

Tools for High Precision LHC Simulations

Martini and Schulze arXiv:1911.11244

Loop-induced sensitivity in Higgs Top operators in Higgs observables

E. Vryonidou

Tree-loop interplay in global fits

Fisher information table

Ethier, Maltoni, Mantani, Nocera, Rojo, Slade, EV and Zhang arXiv:2105.00006

E. Vryonidou

Tree-loop interface

Breaking degeneracies

E. Vryonidou

 \mathcal{O}

Ellis, Madigan, Mimasu, Sanz, You arXiv:2012.02779

Top measurements break the degeneracy between Higgs operators Tools for High Precision LHC Simulations

Does NLO/1-loop change global fits? Global top fits

Linear fits:

Posterior distributions for Wilson coefficients

Ethier et al arXiv:2105.00006

E. Vryonidou

Tools for High Precision LHC Simulations

Significant impact of NLO for some operators

NLO resolves non-interference problem for colour singlet 4-fermion operators

Ongoing and future developments

Status of SMEFT computations at dimension-6: Tree level Monte Carlo: Done NLO QCD: ~Done

NNLO QCD: A couple of examples (Uli's talk)

$$\Delta Obs_n = Obs_n^{\mathsf{EXP}} - Obs_n^{\mathsf{SM}} = \sum_i \frac{c_i^6(\mu)}{\Lambda^2} a_{n,i}^6(\mu) + \mathcal{O}\left(\frac{1}{\Lambda^4}\right)$$

E. Vryonidou

- NLO EW: Some examples available, needed to probe unconstrained operators.

How about this μ ?

RGE in MC

 $\frac{dc_i(\mu)}{d\log\mu} = \gamma_{ij} \, c_j(\mu)$ One loop known: (Alonso) Jenkins et al arXiv:1308.2627, 1310.4838, 1312.2014

Impact of RGE on constraints

Mini-fit in the top sector

Aoude, Maltoni, Mattelaer, Severi, EV (soon)

See also Battaglia, Grazzini, Spira, Wiesemann arXiv: 2109.02987 **Tools for High Precision LHC Simulations**

E. Vryonidou

Conclusions

- and experimental side.
- flavour assumptions etc are needed.
- including them as much as possible can improve our sensitivity.
- running and mixing effects

* Efforts towards EFT interpretations for the LHC are ongoing on both theory

* To allow combination of different analyses common conventions about bases,

* Tools play an important role and their validation and comparison is crucial.

* Higher-order corrections in the EFT predictions can play a crucial role and

* RGE effects included in the Monte Carlo, allowing on the fly computation of

