in collaboration with S. Devoto, S. Kallweit, J. Mazzitelli, L. Rottoli and C. Savoini

q_T subtraction for massive final states: Whb@NINLO in 4FS

Luca Buonocore

University of Zurich

Workshop on Tools for High Precision LHC Simulations Castle Ringberg - 1st November 2022

Intro

W+1bj and W+2bj interesting signatures

- tests of QCD at LHC see talk by A. Huss
- background to $WH(H \rightarrow b\bar{b})$ and single top $bt(t \rightarrow Wb)$
- **bottom quarks modelling:** massive effects, bottom in the PDF, flavour tagging

Workshop on Tools for High Precision LHC Simulations - Castle Ringberg - 2022

NLO corrections (massless bottom quarks)

[Ellis, Veseli, 1999]

- **NLO corrections (massive bottom quarks)**
 - [Febres Cordero, Reina, Wackeroth, 2006, 2009]
- NLO corrections (4FS+5FS)
 - [Campbell, Ellis, Febres Cordero, Maltoni, Reina, Wackeroth, Willenrock, 2009] [Campbell, Caola, Febres Cordero, Reina, Wackeroth,2011]
- NLO+PS
 - [Oleari, Reina, 2011] [Frederix, Frixione, Hirschi, Maltoni, Pittau, **Torrielli, 2011**]
- **POWHEG+MiNLO**
 - [Luisoni, Oleari, Tramontano, 2015]
- Wbb + up to 3 jets
 - [Anger, Febres Cordero, Ita, Sotnikov, 2018]
- Analytical Two-loop W+4partons amplitude in Leading Colour (LC)
 - [Badger, Hartanto, Zoia, 2021] [Abreu, Febres Cordero, Ita, Klinkert, Page, Sotnikov, 2021] see talk by L. Tancredi
- **NNLO corrections (massless bottom quarks)**
 - [Hartanto, Poncelet, Popescu, Zoia, 2022]

Intro: slicing methods

Slicing

$$\int |\mathcal{M}|^2 F_J \,\mathrm{d}\phi_d = \int_0^\delta \left[|\mathcal{M}|^2 F_J \,\mathrm{d}\phi_d \right]_{\mathrm{simp}} + \int_\delta^1 |\mathcal{M}|^2 F_J \,\mathrm{d}\phi_4 + \mathcal{O}(\delta)$$

CONS

- large global cancellation
- residual power corrections

PROS

- usually simpler (allowed to reach N³LO for color
- connection with **factorisation** theorems and **resu**
- implications for higher-order matching (MiNNLC

Workshop on Tools for High Precision LHC Simulations - Castle Ringberg - 2022

Slicing
$$\int |\mathcal{M}|^2 F_J \, \mathrm{d}\phi_d = \int_0^{\delta} \left[|\mathcal{M}|^2 F_J \, \mathrm{d}\phi_d \right]_{\mathrm{simp}} + \int_{\delta}^1 |\mathcal{M}|^2 F_J \, \mathrm{d}\phi_4 + \mathcal{O}(\delta)$$

One of the main reasons for the slicing comeback is the increase in computing power available for such computations.

The life and work of a true genius at last explained in plain English!

Intro: slicing methods: q_T subtraction formalism for massive final states

the calculation of NNLO QCD corrections [Grazzini, Kallweit, Wiesemann 2018]

q_T subtraction formalism extended to the case of **heavy quarks** production [Catani, Grazzini, Torre, 2014]

- Successful employed for computation of NNLO QCD corrections to the production of • a top pair [Catani, Devoto, Grazzini, Kallweit, Mazzitelli, Sargsyan 2019]
 - a **bottom pair** production [Catani, Devoto, Grazzini, Kallweit, Mazzitelli, 2021]

and the computation of Mixed QCD-EW corrections to

- a charged current Drell-Yan [LB, Grazzini, Kallweit, Savoini, Tramontano (2021)]
- a neutral current Drell-Yan [Bonciani, LB, Grazzini, Kallweit, Rana, Tramontano, Vicini (2021)]

$$d\sigma_{N^{k}LO} = \mathscr{H} \otimes d\sigma_{LO} + \left[d\sigma_{N^{k-1}LO}^{R} - d\sigma_{N^{k}LO}^{CT} \right]_{q_{T}/Q > r_{\text{cut}}} + \mathcal{O}(r_{\text{cut}}^{\ell})$$

- *q_T* subtraction **initially formulated for color singlet processes** [Catani, Grazzini, 2007] and successfully applied for

Gearing up for High-Precision LHC Physics MIAPbP 2022

Intro: slicing methods: q_T subtraction formalism for massive final states

The resummation formula shows a **richer structure** because of additional soft singularities (four coloured partons at LO)

Non trivial ingredient

Two-loop soft function [Catani, Devoto, Grazzini, Mazzitelli, in preparation]

Gearing up for High-Precision LHC Physics MIAPbP 2022

- Soft logarithms controlled by the transverse momentum anomalous dimension Γ_t known up to NNLO [Mitov, Sterman, Sung, 2009], [Neubert, et al 2009]
- •Hard coefficient gets a **non-trivial** colour structure (matrix in colour-space)
- •Non trivial azimuthal correlations

Intro: slicing methods: *q*_T subtraction formalism for massive final states

Resolution variable (for example in Drell-Yan)

 $q_T :=$ transverse momentum of the dilepton final state Q := invariant mass of the dilepton final state

Final state must be massive!

Initial-state radiation

For $q_T/Q > 0$ one emission is always resolved

Gearing up for High-Precision LHC Physics MIAPbP 2022

for jets in the final state see talk by L. Rottoli

Final-state (collinear) radiation

There are configurations with $q_T/Q > 0$ and **two unresolved** emission if leptons are massless

Intro: slicing methods: q_T subtraction formalism for massive final states

• <u>Massive final state</u> linear (m = 1) power corrections due to final-state emission

At NNLO: linear (m=1) + log enhancement

in general we have to rely

analytical insight for inclusive cross section in pure QED

$$= -\frac{3\pi}{8} \frac{\alpha}{2\pi} r_{\text{cut}} \left[\frac{6(5-\beta^2)}{3-\beta^2} + \frac{-47+8\beta^2+3\beta^4}{\beta(3-\beta^2)} \log \frac{1+\beta}{1-\beta} \right]$$

$$= \sqrt{1-\frac{4m^2}{s}} \qquad \text{[LB, Grazzini, Tramontano, 2019]}$$

Gearing up for High-Precision LHC Physics MIAPbP 2022

Intro: slicing methods: *q*_T subtraction formalism for massive final states

Progress

- SHARK: of soft function for arbitrary kinematics see talk by J. Mazzitelli
- first $2 \rightarrow 3$ calculation: associated production of a top-anti-top pair and a Higgs see talk by M. Grazzini

Wbb with massive bottom quarks (4FS) desirable. I will report on on-going work **Two-loop amplitude is the main bottleneck**: our strategy is to rely on the **massification procedure**

MATRIX

[Grazzini, Kallweit, Wiesemann 2018]

AMPLITUDES

- 1-loop amplitudes: **OpenLoops**, **Recola** (Collier, CutTOols,...)
- 2-loop: dedicated 2-loop codes (VVamp, GiNac, TDHPL,...)

SUBTRACTION SCHEME

- @NLO: dipole and q_T subtraction
- @NNLO: q_T subtraction

Gearing up for High-Precision LHC Physics MIAPbP 2022

- Two-loop Amplitude
- Preliminary results: comparison with HPPZ
- Conclusions

- Two-loop Amplitude
- Preliminary results: comparison with HPPZ

The massification procedure is based on the **factorisation properties** of QCD amplitudes

the mass

This can be viewed as a **change in the renormalisation scheme** which leads to a universal **"multiplicative renormalization**" relation between (*ultraviolet renormalised*) massive and massless amplitudes

$$\mathscr{M}^{[p],(m)} = \prod_{i \in \{\text{all legs}\}} \left(Z^{(m|0)}_{[i]} \right)^{\frac{1}{2}} \mathscr{M}^{[p],(m=0)} + \mathscr{O}(m^k)$$

• The function $Z_{[i]}^{(m|0)}$ are universal, depends only on the external parton (quark or gluon) and admit perturbative expansion in α_s :

Basic idea: in the small mass limit, the massive amplitude $\mathcal{M}^{[p],(m)}$ and the massless one $\mathcal{M}^{[p],(m=0)}$ are connected as the mass screens some collinear divergences "trading" poles in the dimensional regulator ϵ into logarithms of

• The $Z_{[i]}^{(m|0)}$ are given by the ratio of massive and massless form factors ($\gamma^* q q$ for the quark case)

additional process dependent terms and have been excluded from the definition of the $Z_{r,1}^{(m|0)}$

The massification procedure predicts **poles**, logarithms of mass and mass **independent terms (constants)** of $\mathcal{M}^{[p],(m)}$ while **power corrections** in the mass and the contribution of **heavy loops** cannot be retrieved using this approach

 $\mathscr{M}^{[p],(m)} = \prod \left(Z_{[i]}^{(m|0)} \right)^{\frac{1}{2}} \mathscr{M}^{[p],(m=0)} + \mathscr{O}(m^k)$

• Starting at two loops, contributions from heavy quarks loops (*lh* and *hh*) arise. Their description requires

• The $Z_{[i]}^{(m|0)}$ are given by the ratio of massive and massless form factors ($\gamma^* q q$ for the quark case)

additional process dependent terms and have been excluded from the definition of the $Z_{r,1}^{(m|0)}$

The massification procedure predicts **poles**, logarithms of mass and mass **independent terms (constants)** of $\mathcal{M}^{[p],(m)}$ while **power corrections** in the mass and the contribution of **heavy loops** cannot be retrieved using this approach

 $\mathscr{M}^{[p],(m)} = \prod \left(Z_{[i]}^{(m|0)} \right)^{\frac{1}{2}} \mathscr{M}^{[p],(m=0)} + \mathscr{O}(m^k)$

• Starting at two loops, contributions from heavy quarks loops (*lh* and *hh*) arise. Their description requires

$$\mathscr{M}^{[p],(m)} = \prod_{i \in \{\text{all legs}\}} \left(Z^{(m|0)}_{[i]} \right)^{\frac{1}{2}} \mathscr{M}^{[p],(m=0)} + \mathscr{O}(m^k)$$

• The $Z_{[i]}^{(m|0)}$ are given by the ratio of massive and massless form factors ($\gamma^* q q$ for the quark case)

Remarks

- The functions $Z_{[i]}^{(m|0)}$ are **trivial objects in colour space** and are expressed in terms of colour Casimir
- At each perturbative order, $Z_{[i]}^{(k)}$ is given by a Laurent series in ϵ

$$Z_{[q]}^{(1)} = C_F \left[\frac{1}{\epsilon^2} + \frac{1}{\epsilon} \left(\ln \frac{\mu^2}{m^2} + \frac{1}{2} \right) + \dots \right]$$

requires knowledge of the massless one-loop amplitude
$$\mathcal{M}^{Wbb,(m=0)}_{(1)}$$
 up to $\mathcal{O}(\epsilon^2)$

Two-loop massless amplitudes

Leading-colour two-loop helicity virtual amplitudes for the scattering of a W boson and four partons

- off-shell W boson including its leptonic decay
- publicly available <u>http://www.hep.fsu.edu/~ffebres/W4partons</u>

some complications

- Amplitudes provided as analytical expressions that can be processed in Mathematica; this is not suitable for on-the-fly numerical evaluation for Monte Carlo integration
- Rather long algebraic expressions
- Reference process is $u\bar{b} \rightarrow \bar{b}de^+\nu_e$. Initial-final state crossing involves in general analytic continuation

• analytical expressions obtained within the framework of numerical unitary (using numerical samples) • the results are expressed in terms of a basis of **one-mass pentagon functions** [Chicherin, Sotnikov, Zoia 2021]

• analytical expressions of the one-loop amplitudes up to $\mathcal{O}(\epsilon^2)$ in the leading colour approximation

WbbAmp: a massive C++ implementation

We have implemented the one-loop and two-loop amplitudes of [Abreu et al, 2022] in a C++ library for the efficient numerical evaluation of the **massive** amplitudes

WbbAmp: a massive C++ implementation

Dealing with the complications

One-Loop amplitudes: $\mathcal{O}(1000)$ source files of small-moderate size (< 100 Kb)

- algebraic expressions (rational function of the invariants) simplified using MultiVariate Apart [Heller, von Manteuffel, 2021] at the level of Mathematica before exporting them
- automatised generation of C++ source files from the Mathematica expressions; very simple code optimisation introducing abbreviations (<u>https://github.com/lecopivo/OptimizeExpressionToC</u>)

Two-Loop amplitudes: $\mathcal{O}(3000)$ source files of moderate size (< 250 Kb)

- algebraic expressions **too long and complex**; no pre-simplification step
- breakdown of each expression in small blocks
- automatised generation of C++ source files for each block
- handling of **numerical instabilities**

Crossing

- simple permutation of the momenta in the algebraic coefficients
- the action of the permutation transforms the **pentagon functions** into each other, no need for analytic continuation. All permutations available in a Mathematica script [Chicherin, Sotnikov, Zoia 2021]

WbbAmp: a massive C++ implementation

Validation and checks

- and crossing of the amplitudes within the single precision (7-9 digits)
- for the one-loop amplitudes, we have tested both the **massless and massive** amplitudes against the
- **2009**] (at leading colour)

• the C++ code reproduces the massless results obtained with Mathematica for different phase space points

independent implementation available in MCFM, which allows to extract the leading colour contribution

• the poles of the massive amplitude cancels against the ones predicted in [Ferroglia, Neubert, Pecjac, Yang,

Leading Colour and Massification

- cancellation of the poles
- contributions
- sizeable $C_F / (N_C / 2) \sim 0.89$ and $(C_F / (N_C / 2))^2 \sim 0.8$

$$\mathcal{M}_{(2)}^{Wbb,(m)} = \mathcal{M}_{(2)}^{Wbb,(m=0)} + Z_{[q]}^{(1)} \mathcal{M}_{(1)}^{Wbb,(m=0)} + Z_{[q]}^{(2)} \mathcal{M}_{(0)}^{Wbb,(m=0)} + Z_{[q]}^{(2)} \mathcal{M}_{(0)}^{Wbb,(m=0)} + Z_{[q]}^{(2)} \mathcal{M}_{(0)}^{Wbb,(m=0)} + Z_{[q]}^{(2)} \mathcal{M}_{(1)}^{Wbb,(m=0)} + Z_{[q]}^{Wbb,(m=0)} + Z_{[q]}^{Wb,(m=0)} +$$

with **OpenLoops2**

Workshop on Tools for High Precision LHC Simulations - Castle Ringberg - 2022

• we have carried out the massification procedure in the leading colour approximation to explicitly check the

• however, in this way we are artificially introducing **spurious miscancellation** between real and virtual

• moreover, the terms introduced with the massification, being enhanced by large logarithms of μ^2/m^2 , are generally the dominant contributions and the difference between Full Colour and Leading Colour can be

Outline

- Preliminary results: comparison with HPPZ

Infrared safety and flavour tagging

Jet clustering algorithms consist in a sequence of two-to-one recombination steps. They are then completely defined once the binary distance d_{ii} and the beam distance d_{iB} are given For parton level calculation (fixed order), **infrared safety** is a crucial requirement For observable sensitive to the flavour assignment, infrared safety can be an issue, usually associated to gluon **splitting in the double soft limit** (the problem starts at NNLO)

Two necessary conditions for a wide-angle double-soft limit of two opposite flavoured parton *i* and *j* [Czakon, Mitov, Poncelet, 2022]

- d_{ii} vanishes for every R_{ii}
- d_{ii} vanishes faster than the distance of either *i* or *j* to the remaining pseudo-jets

Workshop on Tools for High Precision LHC Simulations - Castle Ringberg - 2022

this may lead to a flavour configuration different from the corresponding virtual one, spoiling KLN cancellation

Flavour jet algorithms: flavour anti- k_T

Standard anti-
$$k_T$$
 algorithm
 $d_{ij} = \min\left(k_{T,i}^{-2}, k_{T,j}^{-2}\right) R_{ij}^2, \quad d_{iB} = k_{T,i}^{-2}$

Flavour anti- k_T algorithm

$$d_{ij}^{(F)} = d_{ij} \times \begin{cases} \mathcal{S}_{ij}, & \text{if both } i \text{ and } j \\ 1, & \text{otherwise} \end{cases}$$

No change in the beam distance required

Parameter *a* control the turning on of the suppression factor. In the limit $a \rightarrow 0$, the standard anti- k_T algorithm is recovered.

Best choice of the parameter *a* from comparison at NLO (+PS) (minimise unfolding)

have non-zero flavour of opposite sign

Standard
$$k_T$$
 algorithm
 $d_{ij} = \min\left(k_{T,i}^2, k_{T,j}^2\right) R_{ij}^2, \quad d_{iB} = k_{T,i}^2$
=lavour k_T algorithm (common choice $\alpha = 2$)
 $d_{ij}^{(F)} = R_{ij}^2 \times \begin{cases} \left[\max\left(k_{T,i}^2, k_{T,j}^2\right)\right]^{\alpha} \left[\min\left(k_{T,i}^2, k_{T,j}^2\right)\right]^{2-\alpha}, & \text{if softer of } i, j \text{ is flavoured} \\ \min\left(k_{T,i}^2, k_{T,j}^2\right), & \text{if softer of } i, j \text{ is flavourless} \end{cases}$

 $\min\left(k_{T,i}^2,k_{T,j}^2\right),$

Also beam distance problematic (a soft flavoured parton can be identified as a protojet and removed from the list)

$$d_{iB(\bar{B})}^{(F)} = R_{ij}^{2} \times \begin{cases} \left[\max\left(k_{T,i}^{2}, k_{T,B(\bar{B})}^{2}\right) \right]^{\alpha} \left[\min\left(k_{T,i}^{2}, k_{T,B(\bar{B})}^{2}\right) \right]^{2-\alpha}, & \text{if } i \text{ is flavoured} \\ \min\left(k_{T,i}^{2}, k_{T,B(\bar{B})}^{2}\right), & \text{if } i \text{ is flavourless} \end{cases}$$
$$k_{T,B}(y) = \sum_{i} k_{T,i} \left(\Theta(y_{i} - y) + \Theta(y - y_{i})e^{y_{i} - y} \right) & k_{T,\bar{B}}(y) = \sum_{i} k_{T,i} \left(\Theta(y - y_{i}) + \Theta(y_{i} - y)e^{y - y_{i}} \right) \end{cases}$$

Comparison with HPPZ

Selection cuts

 $p_{T,\ell} > 30 \text{ GeV} \qquad |\eta_{\ell}| < 2.1$

 $n_b = 2: p_{T,b} > 25 \text{ GeV} |\eta_\ell| < 2.4$

 $p_{T,i} > 25 \text{ GeV} |\eta_{\ell}| < 2.4$

HPPZ $\alpha_{\rm s}$ and PDF scheme 5FS flavour k_T and flavour anti-k_T Jet clustering algorithm algorithm (R=0.5) NNPDF31 as 0118 (LO, NLO, pdf sets NNLO)

$W + 2 b_{iet} + X$ (inclusive) @ $\sqrt{s} = 8 \text{ TeV}$

[CMS:arXiv:1608.07561]

Reference scale

$$H_T = E_T(\ell \nu) + p_T(b_1) + p_T(b_2)$$

$$E_T(\ell\nu) = \sqrt{M^2(\ell\nu) + p_T^2(\ell\nu)}$$

This work

4FS

k_T and anti-k_T algorithm (R=0.5) NNPDF30_as_0118_nf_4(LO) NNPDF31 as 0118 nf 4 (NLO, NNLO)

Comparison with HPPZ: r_{cut} dependence

 $d\sigma_{N^{k}LO} = \mathscr{H} \otimes d\sigma_{LO} + \left[d\sigma_{N^{k-1}LO}^{R} - d\sigma_{N^{k}LO}^{CT} \right]_{a_{T}/O > r_{\text{out}}} + \mathcal{O}(r_{\text{cut}}^{\ell})$

Behaviour of the power corrections compatible with a **linear scaling** as expected from processes with massive final state

Overall mild power corrections

Control of the NNLO correction at $\mathcal{O}(1\%)$ $\rightarrow \mathcal{O}(0.2\%)$ at the level of the total cross section

Comparison with HPPZ: fiducial cross sections

HPPZ	Inclusive $W^+(\to \ell^+ \nu) b\bar{b}$ cross sections								
Jet algorithm	$\sigma_{ m LO}$ [fb]	$\sigma_{ m NLO}$ [fb]	$K_{ m NLO}$	$\sigma_{ m NNLO}$ [fb]	$K_{ m NNLO}$				
${ m flavour}{-}k_{ m T}$	$213.24(8)^{+21.4\%}_{-16.1\%}$	$362.0(6)^{+13.7\%}_{-11.4\%}$	1.70	$445(5)^{+6.7\%}_{-7.0\%}$	1.23				
flavour anti- $k_{\rm T}$ (a=0.05)	$262.52(10)^{+21.4\%}_{-16.1\%}$	$500.9(8)^{+16.1\%}_{-12.8\%}$	1.91	$690(7)^{+10.9\%}_{-9.7\%}$	1.38				
flavour anti- $k_{\rm T}$ (a = 0.1)	$262.47(10)^{+21.4\%}_{-16.1\%}$	$497.8(8)^{+16.0\%}_{-12.7\%}$	1.90	$677(7)^{+10.4\%}_{-9.4\%}$	1.36				
flavour anti- $k_{\rm T}$ (a = 0.2)	$261.71(10)^{+21.4\%}_{-16.1\%}$	$486.3(8)^{+15.5\%}_{-12.5\%}$	1.86	$647(7)^{+9.5\%}_{-8.9\%}$	1.33				

PRELIMINAR	JO [fb]	NLO [fb]		NNLO [fb]		
$m_b = 4.92 \text{ GeV}$	$210.46(2)^{+21.4\%}_{-16.2\%}$	$468.01(5)^{+17.8\%}_{-13.8\%}$	2.22	$627.5(1.5)^{+10.9\%}_{-10.0\%}$	1.34	33K CPU hours
$m_b = 4.2 \text{ GeV}$	$212.28(2)^{+21.4\%}_{-16.2\%}$	$473.10(5)^{+17.9\%}_{-13.9\%}$	2.23	$641.9(1.5)^{+11.3\%}_{-10.3\%}$	1.36	24K CPU hours

Comparison with HPPZ: Comments

General agreement within scale variations, but 4FS systematically below Change of scheme @NLO [Cacciari, Nason, Greco, 1998] Use same running coupling and PDF set of the 5FS calculation 1.

- 2. No corrective term for pdfs at this order
- Take the massless limit $m_b \rightarrow 0$ 3.

NLO 4FS: 468 fb

Observations

- defined
- indistinguishable among each other up to NNLO
- The double real with **4 massive bottom quarks is negligible** (~1 fb)

Add the extra factor (due to the conversion between \overline{MS} and decoupling schemes): $-\alpha_s \frac{2T_R}{3\pi} \ln \frac{\mu_R^2}{m^2} \sigma_{q\bar{q}}^{\text{LO}}$

At NNLO the situation is more delicate: the massless limit is more problematic and, in principle, ill-

We have verified that the results obtained with the standard k_T and anti- k_T algorithms are practically

Comparison with HPPZ: jet clustering algorithms

Flavour anti- k_T and standard anti- k_T display a similar behaviour

- Flavour k_T favours the clustering of the two bottom quarks in the same leading to the suppression at small ΔR_{bb}

Comparison with HPPZ: jet clustering algorithms

Sizeable NNLO corrections which lead to a steeper slope at small ΔR_{bb} (where the scale uncertainty are larger) Good agreement between flavour and standard anti- k_T for the largest value a = 2

Comparison with HPPZ: additional distributions

Other distributions display similar pattern of the higher-order corrections

The process features two dominant configurations: gluon splitting and t-channel enhancement (back-to-back bottom quarks and back-to-back leptons)

Outline

- Preliminary results: comparison with HPPZ
- Conclusions

Conclusions

- production of a coloured massive final state + a colour singlet system, as ttH and Wbb
- We have report on a **new calculation of Wbb** production in NNLO QCD in the **4FS**
- We rely on the **massification procedure** starting from the corresponding amplitude
- Preliminary results show a qualitative agreement with the massless calculation
- the bottom quark and it seems to prefer a smaller value of the parameter a of the flavour anti- k_T

Outlooks

- Study of W production in association to a single b (comparison with the combined 4FS+5FS @NLO)
- Matching to parton shower in a NNLO+PS implementation

• The calculation of the soft function for arbitrary kinematics allows to use the q_T subtraction formalism for the

• Crucial progress in the calculation of two-loop virtual amplitudes: analytical amplitudes one massive + 4 partons available in the leading colour (non planar topology possibly within the reach in the near future)

• The calculation in the 4FS displays smaller systematic uncertainties associated to the variation of the mass of

