Estimating QCD-EW and EW higher-order corrections

Jonas M. Lindert

us
University of Sussex

Workshop on Tools for High Precision LHC Simulations Ringberg

$$
\text { 3rd November } 2022
$$

Perturbative expansion

$+\alpha_{S}^{2} \mathrm{~d} \sigma_{\mathrm{NNLO}}$
NNLO QCD O(1\%)
$+\alpha_{S}^{3} \mathrm{~d} \sigma_{\mathrm{NNLO}}+\ldots$

scale variation at NNLO
dedicated MC's: Matrix, MCFM, NNLOjet,

Perturbative expansion

 NLO QCD NLO EW
$+\alpha_{S}^{2} \mathrm{~d} \sigma_{\mathrm{NNLO}}$
NNLO QCD
$+\alpha_{S}^{3} \mathrm{~d} \sigma_{\mathrm{NNLO}}+\ldots$

scale variation at NNLO
dedicated MC's: Matrix, MCFM, NNLOjet,

Perturbative expansion

dedicated MC's: Matrix, MCFM, NNLOjet,
$+\alpha_{S}^{2} \mathrm{~d} \sigma_{\mathrm{NNLO}}+\alpha_{\text {EW }}^{2} \mathrm{~d} \sigma_{\text {NNLO EW }}+\alpha_{S} \alpha_{E W} \mathrm{~d} \sigma_{\text {NNLO QCDxEW }}$ NNLO QCD, NNLO EW NNLO QCD-EW NNLO QCD
$+\alpha_{S}^{3} \mathrm{~d} \sigma_{\mathrm{NNLO}}+\ldots$
N 3 CO QCD \longleftrightarrow only known for DY
scale variation at NNLO

Perturbative expansion

EW uncertainties: Sudakov

EW corrections become sizeable at large pт,v: -30\% @ I TeV

Origin: virtual EW Sudakov logarithms

How to estimate corresponding pure EW uncertainties of relative $\mathcal{O}\left(\alpha^{2}\right)$?

EW uncertainties: Sudakov

Large EW corrections dominated by Sudakov logs

[Ciafaloni, Comelli,'98; Lipatov, Fadin, Martin, Melles, '99; Kuehen, Penin, Smirnov, '99; Denner, Pozzorini, '00]

Universality and factorisation: [Denner, Pozzorini; '0 I]

$$
\begin{aligned}
\delta \mathcal{M}_{\mathrm{LL}+\mathrm{NLL}}^{1-\mathrm{loop}}=\frac{\alpha}{4 \pi} \sum_{k=1}^{n}\{ & \frac{1}{2} \sum_{l \neq k} \sum_{a=\gamma, Z, W^{ \pm}} I^{a}(k) I^{\bar{a}}(l) \ln ^{2} \frac{\hat{s}_{k l}}{M^{2}} \\
& \left.+\gamma^{\mathrm{ew}}(k) \ln \frac{\hat{s}}{M^{2}}\right\} \mathcal{M}_{0}
\end{aligned}
$$

EW uncertainties: Sudakov

Large EW corrections dominated by Sudakov logs
\square
Uncertainty estimate of (N)NLO EW from naive exponentiation $\times 2$:

$$
\Delta_{\mathrm{EW}}^{\mathrm{Sud}} \simeq \frac{2}{k!}\left(\kappa_{\mathrm{NLO}, \mathrm{EW}}\right)^{k}
$$

$$
\begin{aligned}
\mathrm{d} \sigma_{\text {EW }}= & \left.\exp \left\{\int_{M_{W}^{2}}^{Q^{2}} \frac{\mathrm{~d} t}{t}\left[\int_{M_{W}^{2}}^{t} \mathrm{~d} \tau \mathrm{~d} \frac{\gamma(\alpha(\tau))}{\tau}+\chi(\alpha(t))+\xi\left(\alpha\left(M_{W}^{2}\right)\right)\right]\right\}\right\}^{p_{T, V}[\mathrm{GeV}]} \mathrm{d} \sigma_{\text {hard }}, \\
= & \left(1+\frac{\alpha}{\pi} \delta_{\text {Sud }}^{(1)}+\left(\frac{\alpha}{\pi}\right)^{2} \delta_{\text {Sud }}^{(2)}+\ldots\right)\left(1+\frac{\alpha}{\pi} \delta_{\text {hard }}^{(1)}+\left(\frac{\alpha}{\pi}\right)^{2} \delta_{\text {hard }}^{(2)}+\ldots\right) \mathrm{d} \sigma_{\text {Born }} \\
& \rightarrow \alpha^{m} \ln ^{n}\left(Q^{2} / M_{W}^{2}\right) \rightarrow \text { finite in limit } Q^{2} / M_{W}^{2} \rightarrow \infty,
\end{aligned}
$$

with

$$
\begin{aligned}
\delta_{\text {Sud }}^{(1)} & =\sum_{i, j} C_{2, i j}^{(1)} \ln ^{2}\left(\frac{Q_{i j}^{2}}{M^{2}}\right)+C_{1}^{(1)} \ln ^{1}\left(\frac{Q^{2}}{M^{2}}\right) \\
\delta_{\text {Sud }}^{(2)} & =\sum_{i, j} C_{4, i j}^{(2)} \ln ^{4}\left(\frac{Q_{i j}^{2}}{M^{2}}\right)+C_{3}^{(2)} \ln ^{3}\left(\frac{Q^{2}}{M^{2}}\right)+\mathcal{O}\left[\ln ^{2}\left(\frac{Q^{2}}{M^{2}}\right)\right]
\end{aligned}
$$

EW uncertainties: Sudakov

Large EW corrections dominated by Sudakov logs

Uncertainty estimate of (N)NLO EW from naive exponentiation $\times 2$:

$$
\begin{gathered}
\Delta_{\mathrm{EW}}^{\mathrm{Sud}} \simeq \frac{2}{k!}\left(\kappa_{\mathrm{NLO}, \mathrm{EW}}\right)^{k} \\
\downarrow
\end{gathered}
$$

check against two-loop Sudakov logs
[Kühn, Kulesza, Pozzorini, Schulze; 05-07]

Tools for EW Sudakov corrections

Sherpa
[Bothmann, Napoletano, '20]

MadGraph5_aMC@NLO
[Pagani, Zaro, '21]

OpenLoops

[JML, Mai, in preparation]

- all based on

$$
\begin{aligned}
& \stackrel{\mathrm{LA}}{\sim} L\left(s, M^{2}\right)+2 l\left(s, M^{2}\right) \log \frac{\left|r_{k l}\right|}{s}+L\left(\left|r_{k l}\right|, s\right) \\
& \quad L\left(\left|r_{k l}\right|, M^{2}\right):=\frac{\alpha}{4 \pi} \log ^{2} \frac{r_{k l}}{M^{2}}, \quad l\left(r_{k l}, M^{2}\right):=\frac{\alpha}{4 \pi} \log \frac{r_{k l}}{M^{2}}
\end{aligned}
$$

Tools for EW Sudakov corrections

Sherpa
[Bothmann, Napoletano, '20]

MadGraph5_aMC@NLO
[Pagani, Zaro, '2 I]

- all based on
[Denner, Pozzorini, '00, '0 I]

$$
\left\{\begin{array}{l}
\left\{v_{a} \stackrel{\operatorname{LA}}{\sim} L\left(s, M^{2}\right)+2 l\left(s, M^{2}\right) \log \frac{\left|r_{k l}\right|}{s}+L\left(\left|r_{k l}\right|, s\right)\right. \\
l_{l} \quad L\left(\left|r_{k l}\right|, M^{2}\right):=\frac{\alpha}{4 \pi} \log ^{2} \frac{r_{k l}}{M^{2}}, \quad l\left(r_{k l}, M^{2}\right):=\frac{\alpha}{4 \pi} \log \frac{r_{k l}}{M^{2}}
\end{array}\right.
$$

OpenLoops

[JML, Mai, in preparation]

Last term relevant when strict Sudakov limit $r_{k l}=\left(p_{k}+p_{l}\right)^{2} \sim 2 p_{k} p_{l} \gg M_{\mathrm{W}}^{2}$ is violated.
However: no control on these terms!

EW uncertainties: hard-coefficient

Scheme variations

e.g. $\left\{G_{\mu}, m_{W}, m_{Z}\right\}$ vs. $\left\{\alpha\left(m_{Z}\right), m_{W}, m_{Z}\right\}$

$$
\begin{gathered}
<\left(\frac{\alpha}{\pi}\right) \delta_{\text {hard }}^{(1)}=2 \% \leftrightarrow \delta_{\text {hard }}^{(1)}=10 \\
\text { Require: } \delta_{\text {hard }}^{(2)} \leq 100 \delta_{\text {hard }}^{(1)} \\
\Delta_{\mathrm{EW}}^{\text {hard }}=1000 \times\left(\frac{\alpha}{\pi}\right)^{2}=0.6 \%
\end{gathered}
$$

However: scheme variations mix perturbative and parametric uncertainties!

EW uncertainties: QED radiation

Conservative estimate of higher-order QED radiation:

NLO EW

vs.
multi-photon radiation (YFS)
or

[JML, Lombardi, Wiesemann, Zanderighi, Zanoli, '22]

Mixed QCD-EW uncertainties

Additive combination:

(no $\mathcal{O}\left(\alpha \alpha_{s}\right)$ contributions)

Multiplicative combination
$\sigma_{\mathrm{QCD} \times \mathrm{EW}}^{\mathrm{NLO}}=\sigma_{\mathrm{QCD}}^{\mathrm{NLO}}\left(1+\frac{\delta \sigma_{\mathrm{EW}}^{\mathrm{NLO}}}{\sigma^{\mathrm{LO}}}\right)$
(try to capture some $\mathcal{O}\left(\alpha \alpha_{s}\right)$ contributions, e.g. EW Sudakov logs \times soft QCD)

Difference between these two approaches indicates size of missing mixed EW-QCD corrections.
$\Delta_{\mathrm{QCD}-\mathrm{EW}}=\delta_{\mathrm{QCD}} \delta_{\mathrm{EW}} \sim 10 \%$ at 1 TeV
Too conservative!?
For dominant Sudakov EW logarithms factorization should be exact!
\rightarrow alternative: $\Delta_{\mathrm{QCD}-\mathrm{EW}}=\delta_{\mathrm{QCD}}\left(\delta_{\mathrm{EW}}^{\mathrm{SL}}+\delta_{\mathrm{EW}}^{\text {hard }}\right)$

Mixed QCD-EW uncertainties

Bold estimate:

Consider real $\mathcal{O}\left(\alpha \alpha_{s}\right)$ correction to

 X production \simeq NLO EW to $X+$ ljetsand we often observe

$$
\left.\frac{\mathrm{d} \sigma_{\mathrm{NLOEW}}}{\mathrm{~d} \sigma_{\mathrm{LO}}}\right|_{X+\text { jet }}-\left.\frac{\mathrm{d} \sigma_{\mathrm{NLOEW}}}{\mathrm{~d} \sigma_{\mathrm{LO}}}\right|_{X} \quad \lesssim 1 \%
$$

In these cases strong support for

- factorisation
- multiplicative QCD \times EW combination
- Consider only such non-factorising effects as uncertainty!?

Mixed QCD-EW uncertainties

Estimate of non-factorising contributions

N-jettiness cut ensures approx. constant ratio $V+2 j e t s / V+j e t$

$$
\tau_{1}=\sum_{k} \min _{i}\left\{\frac{2 p_{i} \cdot q_{k}}{Q_{i} \sqrt{\hat{s}}}\right\}
$$

$$
V+2 j e t s / V+j e t
$$

Exact mixed QCD-EW for DY

[Buccioni, Caola, Delto, Jaquier, Melnikov, Röntsch, '20]
[Behring, Buccioni, Caola, et. al. '20]
[Bonciani, Buonocore, Grazzini, Kallweit et. al. $2 \times$ '2 I]

- pole approximation vs. full computation: agree below the percent level
- Comparison against naive factorised NLO QCD \times NLO EW ansatz: fail at the 5-I 10% level
- At large $p_{\mathrm{T}, \mu^{+}}$in DY: sizeable contributions from $p p \rightarrow V j$ which receives larger EW corrections

Mixed QCD-EW uncertainties

Mixed QCD-EW uncertainties

-More rigorous solution: merge VVj incl. approx. EW corrections with VV with Sherpa's MEPS@NLO QCD + EWvirt
[Kallweit, JML, et. al.; ' 1 5]
 exact virtual contribution approximate integrated real contribution

Used in many ATLAS modern multi-purpose samples:
V+jets, V + +jets , tt+jets

Perturbative expansion: tower of contributions

- For processes with at least $4 q$ there is a tower of $\mathrm{LO}(\mathrm{NLO})$ contributions.
- E.g.: multijets, $t \bar{t}+X, \mathrm{~V}+$ jets $(\mathrm{VBF}-\mathrm{V}), \mathrm{V}+$ jets $(\mathrm{VBS}-\mathrm{V} \mathrm{V})$,
$V+2$ jets:

$$
\mathrm{d} \sigma=\mathrm{d} \sigma\left(\alpha_{S}^{2} \alpha^{2}\right)+\mathrm{d} \sigma\left(\alpha_{S} \alpha^{3}\right)+\mathrm{d} \sigma\left(\alpha^{4}\right)+\ldots
$$

$$
\text { QCD-mode }\left(\mathcal{O}\left(\alpha_{s}\right)\right) \text { interference }\left(\mathcal{O}\left(\alpha_{s}\right)\right.
$$

$$
\cdots+\mathrm{d} \sigma\left(\alpha_{S}^{3} \alpha^{2}\right)+\mathrm{d} \sigma\left(\alpha_{S}^{2} \alpha^{3}\right)+\mathrm{d} \sigma\left(\alpha \alpha^{4}\right)+\sigma\left(\alpha^{5}\right)
$$

Mixed QCD-EW uncertainties

- If LO interference is small: possible to consider QCD and EW production modes as independent and factorise QCD and EW corrections to the respective processes
- Otherwise, still factorise but consider QCD+EW combination as nominal (and QCDxEW as uncertainty)

Conclusions

- At the precision frontier reliable estimates of EW and QCD-EW uncertainties are becoming mandatory
- EW uncertainties:
© Higher-order Sudakov corrections: $\Delta_{\mathrm{EW}}^{\mathrm{Sud}}=\left(\delta_{\mathrm{Sud}}^{(1)}\right)^{2}$
- Higher-order hard corrections: $\Delta_{\mathrm{EW}}^{\mathrm{hard}} \approx 1 \%$
- Higher-order QED radiation: $\Delta_{\mathrm{EW}}^{\mathrm{QED}}=\left|\delta_{\mathrm{EW}}-\delta_{\mathrm{EW}+\mathrm{PS} / \mathrm{YFS}}\right|$
- QCD-EW uncertainties:
- Conservative: difference between add. and multipl. combination: $\Delta_{\mathrm{QCD}-\mathrm{EW}}=\delta_{\mathrm{QCD}} \delta_{\mathrm{EW}}$
- More aggressive: $\Delta_{\mathrm{QCD}-\mathrm{EW}}=\delta_{\mathrm{QCD}}\left(\delta_{\mathrm{EW}}^{\mathrm{SL}}+\delta_{\mathrm{EW}}^{\mathrm{hard}}\right)$ (applicable when $\delta_{\mathrm{EW}} \sim \delta_{\mathrm{EW}}^{\mathrm{DL}}$)
- For processes subject to significant QCD radiation: $\Delta_{\mathrm{QCD}-\mathrm{EW}}^{\mathrm{multi} \text { jet merged }}=\delta_{\mathrm{QCD}} \delta_{\mathrm{EW}}$

○ X+j@ NLO EW computations might allow for estimate of non-factorising effects

- Factorisation feasible for processes with small interferences of born orders
- Necessary tools are available:
© NLO EW in MG5_aMC@NLO / Sherpa / POWHEG
- NLL EW in Sherpa / MG5_aMC@NLO / OpenLoops
- NLOPS EW in POWHEG / MEPS NLO EW + YFS in Sherpa

Backup

The need for off-shell computations:VV
[Biedermann, M. Billoni, A. Denner, S. Dittmaier, L. Hofer, B. Jäger, L. Salfelder ;'I 6]

$p p \rightarrow V(\rightarrow \ell \bar{\ell}) V^{\prime}\left(\rightarrow \ell^{\prime} \bar{\ell}^{\prime}\right)$
VS.

$$
p p \rightarrow \ell \bar{\ell} \ell^{\prime} \bar{\ell}^{\prime}
$$

$\boldsymbol{\epsilon}$ sizeable differences in fully off-shell vs. double-pole approximation in tails

Relevance of EW higher-order corrections: photon-induced channels

III. QED factorisation and thus photon luminosities needed to absorb IS photon singularities.
\rightarrow Possible large enhancement due to photon-induced channels in the tails of kinematic distributions,
in particular in WW :

\rightarrow large differences between different photon descriptions. Now settled: LUXqed superior
$\rightarrow \mathrm{O}(10 \%)$ contributions from photon-induced channels

Combination of QCD and EW corrections

- full calculations of $\mathcal{O}\left(\alpha \alpha_{s}\right)$ out of reach
- Approximate combination: MEPS@NLO including (approximate) EW corrections
- key: QCD radiation receives EW corrections!
- strategy: modify MC@NLO B-function to include NLO EW virtual corrections and integrated approx. real corrections $=\mathrm{VI}$

$$
\overline{\mathrm{B}}_{n, \mathrm{QCD}+\mathrm{EW}_{\text {virt }}\left(\Phi_{n}\right)=\overline{\mathrm{B}}_{n, \mathrm{QCD}}\left(\Phi_{n}\right)+\mathrm{V}_{n, \mathrm{EW}}\left(\Phi_{n}\right)+\mathrm{I}_{n, \mathrm{EW}}\left(\Phi_{n}\right)}^{\text {exact virtual contribution }} \begin{aligned}
& \text { approximate integrated real contribution }
\end{aligned}
$$

Mixed QCD-EW corrections to DY production: NC

-For precision in resonant region: expand around M^{2}

non-factorizable
[Dittmaier, Huss, Schwinn, ' 14$]$

prod x decay
[Dittmaier, Huss, Schwinn, 'I 5]

genuine QCD-EW in prod
[Buccioni, Caola, Delto, Jaquier, Melnikov, Röntsch, '20] [Behring, Buccioni, Caola, et. al. '20] last missing piece
$\mathrm{CC}+\mathrm{NC}$:
$\frac{\delta m_{V}^{\text {meas }}}{m_{W}^{\text {meas }}}=\frac{\delta C_{\mathrm{th}}}{C_{\mathrm{th}}}=\frac{\delta\left\langle p_{\perp}^{l, Z}\right\rangle^{\text {th }}}{\left\langle p_{\perp}^{l, Z}\right\rangle^{\text {th }}}-\frac{\delta\left\langle p_{\perp}^{l, W}\right\rangle^{\text {th }}}{\left\langle p_{\perp}^{l, W}\right\rangle^{\text {th }}}$

```
\deltam}\mp@subsup{W}{W}{\mathrm{ meas }}=-17\pm2\textrm{MeV
```

```
\deltam}\mp@subsup{W}{W}{\mathrm{ meas }}=-17\pm2\textrm{MeV
```

- net effect: few per-mille
dominant
[Behring, Buccioni, Caola, et. al. '2 I]

$$
\mathrm{QCD}^{2} / 10-\mathrm{QCD} \times \mathrm{QED}-\mathrm{QCD} \times \text { weak }-\left\{\begin{array}{l}
+ \\
+
\end{array}\right.
$$

