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DISCLAIMER

Not trying to be a review, and therefore *not* complete in any way

Just giving an account of some problems I find interesting and that I have personally
been working on in the past months



FROM LAGRANGIANS TO CROSS-SECTIONS

From Lagrangian to Cross-Section it’s a long way
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From Lagrangian to Cross-Section it’s a long way
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Building blocks are %95

Scattering Amplitudes X




FROM AMPLITUDES TO INTEGRALS

Scattering Amplitudes
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FROM AMPLITUDES TO INTEGRALS
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(Scalar) Feynman Integrals
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FROM AMPLITUDES TO INTEGRALS

P

(Scalar) Feynman Integrals —
L gD, b b, IBPs, Finite fields etc Some analytic or numerical
_ JH [ M1 " m diff Gial Ny result for the amplitudes
— ifferential equations
H L 2mP D... Dy E

Feynman parameters

with §; € {k; - k;, ..., k; - p;} Numerical methods ...



SCALAR FEYNMAN INTEGRALS

From tensor reduction, huge number of scalar integrals (gg — gg @ 3 loops ~ 107 integrals!)
Standard Approach: divide et impera
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P

Integration by parts identities — master integrals

EE— i — [Chetyrkin, Tkachov ’81] & many others: most
— recently finite fields,

/ \ intersection theory etc
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Coefficients (process-
dependent)

Very complicated rational
functions, hundreds of
MBs for complicated
processes:

Algebraic Complexity



SCALAR FEYNMAN INTEGRALS

From tensor reduction, huge number of scalar integrals (gg — gg @ 3 loops ~ 107 integrals!)

Standard Approach: divide et impera

Coefficients (process-
dependent)

Very complicated rational
functions, hundreds of
MBs for complicated
processes:

Algebraic Complexity

Process-independent building
blocks: Master Integrals

Involved special
functions with
complicated mathematical
properties:

Analytic complexity



SCALAR FEYNMAN INTEGRALS

From tensor reduction, huge number of scalar integrals (gg — gg @ 3 loops ~ 107 integrals!)
Standard Approach: divide et impera

Extremely successful strategy: in the past 2 decades it has allowed us to overcome
the two-loop frontier for 2 — 2 and 2 — 3 processes, with increasing number of
scales (and masses), and recently opened the way to 2 — 2 three loop calculations

[ will not review all these developments, there are way too many :-)
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N )
<> =) Rx.....%) I(x),....x,)
T =1
TN




DECOMPOSITION INTO SCALAR INTEGRALS
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First step:

Strip it of Lorentz and Dirac structures

N / dk 1 _
(2m)4 k2(k — p2)2(k — pa — p3)2(k — p1 — p2 — p3)?

Scalar Feynman Integrals are
what we know how to compute



TENSOR DECOMPOSITION

Projector-Form Factors method in a nutshell

1. Pick your favourite process, for example gg — Zg

2. Use Lorentz + gauge + any symmetry (parity, Bose etc...) to find minimal set of
tensor structures in d space-time dimensions:

4= 5T,
J

3. Derive projectors operators to single out corresponding form factors: ‘@j o = F]

Mij = Z TZTTI ‘@j = Z <M_1)jk le
k

pol

4. Apply these projectors on Feynman diagrams repr of the scattering amplitude



TENSOR DECOMPOQSITION: pros anp cons

Problems in d-dimensions
Powerful and very general method

Often used in CDR, can become intractable for complicated problems due to evanescent
structures in d=4
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Problems in d-dimensions
Powerful and very general method

Often used in CDR, can become intractable for complicated problems due to evanescent
structures in d=4

Typical case 4 quark scattering g(p,) + g(p;) — O(p;) + O(py)

~ u(p)UHu(py) w(p)ly, |, w(py)

.....

Infinite number of tensor structures in d dimensions

Dy = u(p1)yu u(p2) w(ps)vu, u(ps),

Dy = u(p1)p3u(p2) u(ps)pru(ps),

D3 = u(p1) Vs Yuo YusW(D2) W(P3) V1 Vpso Vs w(Pa),

Dy = u(p1) Vs P3Vusw(p2) WP3) Vi P1Vpsu(Pa), —% upto2loops!
D5 = u(p1)Vp Vo Vs Vira Vs WP2) WD3)Vpay Vpso Vpss Vs Vs W(D4)

De = u(p1)Vp Vo P3Vpa Vs W(D2) W(D3) V12 Va1V 104 Yis W(P2)-



TENSOR DECOMPQOSITION: uperape in av

Improvements in d=4 [Peraro, Tancredi ’19,’20]

Only two of these structures are linearly independent if external states are in d = 4

q(p,) + G(py) = O(p;) + O(py)

Dy = u(p1)vu w(p2) w(p3)yu, u(ps),
Dy = u(p1)p3u(p2) u(ps)pru(pa),

They are enough to obtain full result in 't Hooft-Veltman scheme
They are also enough for the finite remainder in CDR!

Use to complete pp — pp @ 3 loops [Caola, Chakraborty, Gambuti, Manteuffel, Tancredi ’21,’22]



TENSOR DECOMPOSITION FOR CHIRAL THEORIES

Let’s see how this works for chiral theories (new & unpublished)

Consider the production of a Z-boson and a jet in quark-antiquark annihilation

qg(py) + G(p,) = g(p3) + Z(py)



TENSOR DECOMPOSITION FOR CHIRAL THEORIES

Let’s see how this works for chiral theories (new & unpublished)

Consider the production of a Z-boson and a jet in quark-antiquark annihilation

qg(py) + G(p,) = g(p3) + Z(py)

Status:

Pheno @ NNLO including only vector-like couplings of singlet type

Amplitudes [Garland, Gerhmann et al ’02]
Pheno [Gehrmann-De Ridder et al ’17, ’18] etc etc

Z -

y#y> — axial coupling neglected in singlet contributions —

Need to include top+bottom to get consistent result (anomaly!)



TENSOR DECOMPOSITION FOR CHIRAL THEORIES

One issue for axial couplings is
evanescent structures in chiral tensor




TENSOR DECOMPOSITION FOR CHIRAL THEORIES

One issue for axial couplings is
evanescent structures in chiral tensor

Our method: only independent tensors in d = 4 are relevant, we can span it with a
basis of vectors ind = 4: pi', p)', p, plus the fourth parity-odd one

v, PO __ _pPip2psi __ M
CvpouP1PoP3 = € — Uy

With these, a possible basis can be written as: (could be further optimised for singlet contributions)
Agv = 64,u€3,uz4/jf{\’;
= ea,u€3, |U(p2)pyulpr) (Kapipy + Kopypl + Ksg" + Ripiviy + Rophvly + Rsv)ypy)
+ U(p2)y"u(pr) (Kapi + Ksph) + u(p2)v"u(p1) Kepy
+a(p2)p 4u(pr) (Rap'py + Rsphpy) + Re (u(p2)y"u(p1)viy + a(p2)y"u(pr)vly)]

[Gehrmann, Peraro, Tancredi to appear soon]



TENSOR DECOMPOSITION FOR CHIRAL THEORIES

AAV — 64,/163,1/1451’(/
= €4,€3,0 [ﬂ(p2)p3u(pl) (K1pyp! + Kopsypi + Ksg"” + Ripyviy + Rapyvy + RsvypY)

+ u(p2)y u(py) (Kap| + Kspy) + t(p2)7"u(p1) Kepy
+u(p2)y 4u(pr) (Rapi'py + Rsphpy) + Re (a(p2)y u(p1)vl + w(p2)y u(pr)vy)]

The counting is straightforward:
Gives a total of = 12

» 2 helicities for the gg line (massless) helicity amplitudes

> 2 helicities for the (physical) gluon matched by the number of

> 3 helicities for the (physical) Z boson tensors and form factors

Note that manipulations are done in tHV / Larin scheme

d—3
4

Di VA = 07 VA -V = ¢P1P2P3 1 [P1P2P3 K — $12513593

[Gehrmann, Peraro, Tancredi to appear soon]



NATURAL SOLUTION FOR GAMMAS IN LARIN'S SCHEME

Agv = espes AL
= 4,063, [ﬂ(pz)p3U(p1) (Kipi'py + Kophpi + Ksgh” + Ripivy + Rophvly + Rsvlyp?)
+ w(p2)y"u(pr) (Kapy + Kspy) + u(p2)y"u(p1) Kepy
+a(p2)¥ yulpr) (RappY + Rsphpy) + Re (u(p2)y"u(p1)v’s + a(pe)y” u(pr)vh)]

[Gehrmann, Peraro, Tancredi to appear soon]

tensors and projectors contain *at most* one occurrence of €,

¥s never appears in the tensor decomposition!

very natural to be applied in Larin-Scheme




NATURAL SOLUTION FOR GAMMAS IN LARIN'S SCHEME
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Example: One-loop singlet form factors Z "N\
At one loop there is only 1 form factor effectively >u<
0000/

R = e 222 [Bub (% —2)(t +u) + ) Bub (m S—I—t—l—u)]
R = (i Q)iizt —m [Bub (% )(t + ) ) Bub (m?) (s + t + u)]
R3 = (d— 2;:;(2 ) _Bub (% ) Bub s+t+u)
Ry = - 2)22(2 T _Bub( s) (% ) Bub (m?) (s +t + u)
Rs = d- 2;92& e :Bub( ) (% ) Bub (m?) (s +t + u)

Rg =0



MASTER INTEGRALS: anaumic compLexiry
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MASTER INTEGRALS: anaumic compLexiry
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/OO ds’ 1
4mz 8" —§ — 1€ /(s — 4m?)

1 1n<\/s—4m2—|—\/§)
v/ 8(s — 4m?) Vs —4m?2 — /s

—~

Scattering amplitude has (poles and) branch cuts — encoded in master integrals!



GEOMETRY AND FEYNMAN INTEGRALS

[terated integrals on the Riemann Sphere ~ multiple polylogarithms

G(cl,...,ck;af;):/ dt r(c1,t)G(ca, ..., C; t)
0
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Iterated integrals on the Riemann Sphere ~ multiple polylogarithms

G(cl,...,ck;x):/ dt r(c1,t)G(ca, ..., C; t)
0

— the famous g-2 calculation, by now known to 5 loops numerically

C, = A\ — +0.50000000...
Co = A A A — —0.328478965...

Cs = QAA — +1.181241456...



GEOMETRY AND FEYNMAN INTEGRALS

Iterated integrals on the Riemann Sphere ~ multiple polylogarithms

G(cl,...,ck;x):/ dt r(c1,t)G(ca, ..., C; t)
0

— the famous g-2 calculation, by now known to 5 loops numerically

[Kinoshita et al]
Ch =

= 5 [Schwinger *48]

Co = A A A — % + 1—12772 — %772 In2 + ZC(S) [Petermann, Sommerfield ’57]
B 83 , 215 100 /1 In* 2 72In? 2
e QA\A ot RCEE XGRS (CIORE DR =

239 4 139 298 o

L1895 g o L7101 5 28259
— —T7 — — — 7 In T
2160 18 9 810 5184

[Laporta, Remiddi ’97]




GEOMETRY AND FEYNMAN INTEGRALS

Iterated integrals on the Riemann Sphere ~ multiple polylogarithms

G(ci, ..., cu5 1) :/ dt r(c1,t)G(ca, ..., C; t) -
0

— the famous g-2 calculation, by now known to 5 loops nymerically
[Kinoshita et al]

1
Cp = = 5 [Schwinger *4§]

197 1 1 3
Cy = — =4 g2 421594 = [Petermann, Sommerfield ’57]
? AAA a1 T2t af w2t )
B 83 , 215 100 . /(1 In* 2 72In? 2
o QA\A =i | (m () ) -
239 139 208 17101 28259

4 2
_ 27 227 63) — 222 1210 9
60" T ge® g T %0 " T Bisa

[Laporta, Remiddi ’97]



BEYOND GENUS 0

Riemann sphere too simple, Feynman integrals involve more interesting geometries

First non-trivial case with famous sunrise graph received a lot of attention in past decade

% e O The sunrise integral




BEYOND GENUS 0

Riemann sphere too simple, Feynman integrals involve more interesting geometries

First non-trivial case with famous sunrise graph received a lot of attention in past decade

% e Q The sunrise integral

1 16m?>./s )

N N
U V(3m —/s)(v/s +m)3 (3m — /5)(v/s +m)3

One dimensional surfaces of genus 1 — elliptic curves

€T
Eqlel = ekix,a) = / dt U, (c1,t,a@) Eq(e2 ek st, d)
0

[Brown, Levin ’11; Adams, Weinzierl ’13,’15; Broedel, Duhr, Dulat, Penante, Tancredi
’17,°18,’19; Broedel, Mafra, Matthes, Schlotterer ’15,’16]



HIGHER GENERA AND HIGHER DIMENSIONS

Examples of Higher genera mk ks by Genus 3

[Georgoudis, Zhang ’15]




HIGHER GENERA AND HIGHER DIMENSIONS

Examples of Higher genera mk ks by Genus 3

[Georgoudis, Zhang ’15]

Examples known up to genus 13

D3
P2 P4
EVAv
2 %
/&
p7 Pe

[Huang, Zhang ’13]



HIGHER GENERA AND HIGHER DIMENSIONS

Examples of Higher genera mi ok ks Genus 3

[Georgoudis, Zhang ’15]
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[Huang, Zhang ’13] O
!’
[P1cture from: Koziowska -Walania ‘20]

Examples known up to genus 13
D3

9



HIGHER GENERA AND HIGHER DIMENSIONS

[t is somewhat simpler to generate higher dimensional objects

A Calabi-Yau surface can be thought as an elliptic curve in more dimensions



HIGHER GENERA AND HIGHER DIMENSIONS

[t is somewhat simpler to generate higher dimensional objects

A Calabi-Yau surface can be thought as an elliptic curve in more dimensions

I-loop “banana graphs” generate (I-1)-fold CYs

S

AN
\é‘\\

mq

mi4q

[Primo, Tancredi ’17], [Brodel, Duhr, Dulat, Marzucca, Penante,
Tancredi ‘19][Bonisch, Duhr, Fischbach, Klemm, Nega ’21]
[P6gel, Wang, Weinzierl ’22] .... MANY OTHERS...



HIGHER GENERA AND HIGHER DIMENSIONS

I-loop “banana graphs” generate (I-1)-fold CYs

5
[Bonisch, Duhr, Fischbach, Klemm, Nega *21] \{:{\}:\
BT
my
ma
2 m 2
p k p
mi4+1

dJ,(z;€) = B,(z;€) J,.(25€) + N,.(2; €)

Solution obtained integrating N, over the inverse Wronskian The “Wronskian”

( wl,o(z) wl,l(z) c. wl,l_l(z) \
(‘9zwl,0(z) 6’zwl,1(z) ce azwl,l_l(z)

\02_1135,0(2) 82_1@,1(2') 82_173575_1(2))

dW;(z) = Bor(2) Wy (2)



HIGHER GENERA AND HIGHER DIMENSIONS

I-loop “banana graphs” generate (I-1)-fold CYs

)
N
=
N

[Bonisch, Duhr, Fischbach, Klemm, Nega *21]
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dJ,(z;€) = B,(z;€) J,.(25€) + N,.(2; €)

Solution obtained integrating N, over the inverse Wronskian The “Wronskian”

& wl,o(z) wl,l(z) c. wl,l_l(z) \

(‘9zwl,0(z) 6’zwl,1(z) azwl,l_l(z)

\82_1135,0(2) 82_1@,1(2') ai_lwl,l_l(z))
“Periods” of the CY

Independent “ways” how you can move along the surface dW,.(z) = Bo,(2) Wr(2)
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A curious generalisation  The Ice (cream) cone graphs
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HIGHER GENERA AND HIGHER DIMENSIONS

A curious generalisation  The Ice (cream) cone graphs

[Duhr, Klemm, Nega, Tancredi, to appear soon]

We can prove that @ 1 loops its finite part
contains two equivalent copies of the banana
graph and nothing else

21-1 master integrals = 2(I-1) + 1

s = (p1 + p2)?

ng

Cut 11 1.00(5;2)] ]{

(I=1)
C (23 + m2x) (Zg N %2> Cut {Ba,nl 1 (23)}

based on [Primo, Tancredi ’16,’17]

, (1 +x)

X

Two residues in d=2 — two copies of the Banana graph evaluates at different points s = m



HIGHER GENERA AND HIGHER DIMENSIONS
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The Ice (cream) cone graphs @ 3 loops = 5 MIs

Relevant, for example, for 3 loop
gg — H with massive quarks

d
703 =
dax™
[ 0 0 0 0 0
0 0 0 0 0
2 1422
(1—z)(1+x) 0 x(l—x)(14x) 0 0
0 0 0 0 1
0 0 3(1—x) - 1+3z (1—3z)(143x)
x2(1+9x) 22(1+x)(14+9z) z(1+x)(1+9x)
0 0 0 0 0
3(1—x)
0 0 — 2(972) 0 0
\ 0 0 0 0 0

0 0
0 0
0 0
0 0
0 0
0 1
. 34z 94202432
z(1+z)(9+x)  z(1+z)(9+x)
0 0

Last integral not independent in d=2, can be chosen to be zero, it decouples

[Remiddi, Tancredi ’13]

——

oS O O O O O O O
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HIGHER GENERA AND HIGHER DIMENSIONS

The Ice (cream) cone graphs @ 3 loops = 5 MlIs

Relevant, for example, for 3 loop
gg — H with massive quarks

d
703 =
do™
[0 0 0 0 0 0 0 0\
0 0 0 0 0 0 0 0
2 1422
(1—z)(1+x) 0 w(l—x)aéHx) 0 0 0 0 0
: X ’ ’ 1 0 0 0 73)
3(1—x) 143 (1—3z)(143x) I
% 0 22 (1+9z) _w2(1+x)(a1}+9x) z(1+z)(1+9z) 0 0 0
0 0 0 0 0 0 1 0
3-e) 3t 94202432
O O _x2(9—|-$) O O _ZE(1+£IZ)(9—|—£E) _:I:(l—l—ac)(9—|—:1:) O

\

Last integral not independent in d=2, can be chosen to be zero, it decouples [Remiddi, Tancredi *13]
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A LOT of beautiful results are (almost continuously) being released: 2 — 3
massless and now massive, recent first studies for massless 2 — 4, etc etc
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CONCLUSIONS

A lot has been happening in multi-loop calculations

A LOT of beautiful results are (almost continuously) being released: 2 — 3
massless and now massive, recent first studies for massless 2 — 4, etc etc

[ am truly sorry I did not review any of it :-)

I tried to show two developments I am involved with, to give a glimpse of some of
the structures that appear in high precision calculations for the LCH

With a message for (mainly) young people: LHC physics requires messy
calculations, we cannot avoid that, but there is a lot of “beauty” in pQFT, and it is a
lot of fun to be looking for it, while “crunching numbers for cross sections”



THANK YOU VERY MUCH!



