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PROGRESS ON MULTILOOP CALCULATIONS 
(MAINLY TWO EXAMPLES OF SOME DEVELOPMENTS I FIND INTERESTING)



DISCLAIMER
Not trying to be a review, and therefore *not* complete in any way

Just giving an account of some problems I find interesting and that I have personally 
been working on in the past months
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FROM LAGRANGIANS TO CROSS-SECTIONS

From Lagrangian to Cross-Section it’s a long way

X
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Building blocks are 
Scattering Amplitudes

�qq̄!gg =

Z
[dPS] |Mqq̄!gg|2
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FROM AMPLITUDES TO INTEGRALS

Scattering Amplitudes

𝒜 = ϵμ1
1 ⋯ϵμn

n v̄(q) Γμ1,...,μn
u(p)~

differential equations 

Feynman parameters 

Numerical methods …

(Scalar) Feynman Integrals

ℐ = ∫
L

∏
l=1

dDkl

(2π)D

Sb1
1 . . . Sbmm

Da1
1 . . . Dan

n

with Si ∈ {ki ⋅ kj, . . . , ki ⋅ pj}

IBPs, Finite fields etc Some analytic or numerical 
result for the amplitudes
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From tensor reduction, huge number of scalar integrals (  @ 3 loops ~  integrals!) 

Standard Approach: divide et impera
gg → gg 107

Integration by parts identities  master integrals→
[Chetyrkin, Tkachov ’81] & many others: most 

recently finite fields, 
intersection theory etc
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dependent)
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functions, hundreds of 
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Process-independent building 
blocks: Master Integrals

Involved special 
functions with 
complicated mathematical 
properties: 

Analytic complexity

From tensor reduction, huge number of scalar integrals (  @ 3 loops ~  integrals!) 

Standard Approach: divide et impera
gg → gg 107

Coefficients (process-
dependent)

Very complicated rational 
functions, hundreds of 
MBs for complicated 
processes: 

Algebraic Complexity
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=
N

∑
i=1

Ri(x1, . . . , xr) ℐi(x1, . . . , xn)

From tensor reduction, huge number of scalar integrals (  @ 3 loops ~  integrals!) 

Standard Approach: divide et impera
gg → gg 107

SCALAR FEYNMAN INTEGRALS

Extremely successful strategy: in the past 2 decades it has allowed us to overcome 
the two-loop frontier for  and  processes, with increasing number of 
scales (and masses), and recently opened the way to  three loop calculations

2 → 2 2 → 3
2 → 2

I will not review all these developments, there are way too many :-)
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∑
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Ri(x1, . . . , xr) ℐi(x1, . . . , xn)

DECOMPOSITION INTO SCALAR INTEGRALS

Mgg!Hg ⇠
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Z
ddk

(2⇡)d
1

k2(k � p2)2(k � p2 � p3)2(k � p1 � p2 � p3)2
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First step: 

Strip it of Lorentz and Dirac structures  

Scalar Feynman Integrals are 
what we know how to compute

=



TENSOR DECOMPOSITION

1. Pick your favourite process, for example  

2. Use Lorentz + gauge + any symmetry (parity, Bose etc…) to find minimal set of 
tensor structures in d space-time dimensions: 

3. Derive projectors operators to single out corresponding form factors: 

4. Apply these projectors on Feynman diagrams repr of the scattering amplitude 

qq̄ → Zg

Projector-Form Factors method in a nutshell

Mij = ∑
pol

T†
i Tj

𝒫j𝒜 = Fj

𝒜 = ∑
j

Fj Tj

𝒫j = ∑
k

(M−1)jk
T†

k
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Problems in d-dimensions

Powerful and very general method 

Often used in CDR, can become intractable for complicated problems due to evanescent 
structures in d=4
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where the coefficients AI are vectors in colour space and are functions of s12 and s23 (and implicitly

s13 = −s12 − s23) where sij = (pi + pj)2 and the six Dirac structures are

D1 = ū(p1)γµ1u(p2) ū(p3)γµ1u(p4),

D2 = ū(p1)/p3u(p2) ū(p3)/p1u(p4),

D3 = ū(p1)γµ1γµ2γµ3u(p2) ū(p3)γµ1γµ2γµ3u(p4),

D4 = ū(p1)γµ1/p3γµ3u(p2) ū(p3)γµ1/p1γµ3u(p4),

D5 = ū(p1)γµ1γµ2γµ3γµ4γµ5u(p2) ū(p3)γµ1γµ2γµ3γµ4γµ5u(p4),

D6 = ū(p1)γµ1γµ2/p3γµ4γµ5u(p2) ū(p3)γµ1γµ2/p1γµ4γµ5u(p4). (2.11)

This tensor structure is a priori d-dimensional since the Lorentz indices are d-dimensional and the

dimensionality (and helicity) of the external states has not yet been specified. One can in principle

relate the strings of gamma matrices appearing in D3 to D6 to a standard set involving only D1 and

D2 using four-dimensional tricks. However, because these are the structures that naturally arise in

the parity conserving interactions of QCD, we choose to use this extended set as a d-dimensional basis

that is valid at up to two-loops. We note that the Dirac algebra is infinite dimensional for non-integer

d and that the basis set will extend according to the order that |M〉 is computed. For example, at

tree level, only D1 appears, while D2, D3 and D4 first appear at one-loop. D5 and D6 appear for

the first time at two-loops while at three-loops, we will find terms (represented by + . . .) with seven

gamma matrices sandwiched between the quark spinors. These more complicated structures can also

be related to the simpler ones using four-dimensional tricks (which we choose not to do at the present

time).

When the quarks are identical, the general structure of the amplitude is modified,

|M〉 = |M〉 − δqQ|M〉, (2.12)

where

|M〉 = |M〉(p2 ↔ p4). (2.13)

The minus sign is due to the exchange of identical fermions, while the momentum swap corresponds

to exchanging s12 and s23 in the coefficents AI . All appropriate colour indices are also exchanged. In

general we will multiply these additional identical fermion terms with a δqQ which is unity when the

quarks are identical and zero otherwise.

2.2 Projectors for the tensor coefficients

The six coefficients AI may be easily extracted from a Feynman diagram calculation with two distinct

quark flavours using projectors that act on the general tensor of Eq. (2.10) such that

∑

spins

P(AI) |M〉 = AI(s12, s23). (2.14)

The explicit forms for the projectors in d space-time dimensions are,

P(A1) =
1

480s13s223s
2
12(d− 5)(d − 6)(d − 7)(d − 3)(d − 4)

×

(
(2.15)

– 4 –

up to 2 loops!



TENSOR DECOMPOSITION: UPGRADE IN THV

Improvements in d=4

Only two of these structures are linearly independent if external states are in d = 4

q(p2) + q̄(p1) → Q(p3) + Q̄(p4)
where the coefficients AI are vectors in colour space and are functions of s12 and s23 (and implicitly
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D2 using four-dimensional tricks. However, because these are the structures that naturally arise in
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that is valid at up to two-loops. We note that the Dirac algebra is infinite dimensional for non-integer

d and that the basis set will extend according to the order that |M〉 is computed. For example, at

tree level, only D1 appears, while D2, D3 and D4 first appear at one-loop. D5 and D6 appear for

the first time at two-loops while at three-loops, we will find terms (represented by + . . .) with seven

gamma matrices sandwiched between the quark spinors. These more complicated structures can also

be related to the simpler ones using four-dimensional tricks (which we choose not to do at the present
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When the quarks are identical, the general structure of the amplitude is modified,
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where
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The minus sign is due to the exchange of identical fermions, while the momentum swap corresponds

to exchanging s12 and s23 in the coefficents AI . All appropriate colour indices are also exchanged. In

general we will multiply these additional identical fermion terms with a δqQ which is unity when the

quarks are identical and zero otherwise.

2.2 Projectors for the tensor coefficients

The six coefficients AI may be easily extracted from a Feynman diagram calculation with two distinct

quark flavours using projectors that act on the general tensor of Eq. (2.10) such that

∑
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P(AI) |M〉 = AI(s12, s23). (2.14)
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[Peraro, Tancredi ’19,’20]

They are enough to obtain full result in ’t Hooft-Veltman scheme 

They are also enough for the finite remainder in CDR! 

Use to complete  @ 3 loopspp → pp [Caola, Chakraborty, Gambuti, Manteuffel, Tancredi ’21,’22]



TENSOR DECOMPOSITION FOR CHIRAL THEORIES

Let’s see how this works for chiral theories (new & unpublished) 

Consider the production of a Z-boson and a jet in quark-antiquark annihilation

q(p1) + q̄(p2) → g(p3) + Z(p4)



TENSOR DECOMPOSITION FOR CHIRAL THEORIES

Let’s see how this works for chiral theories (new & unpublished) 

Consider the production of a Z-boson and a jet in quark-antiquark annihilation

q(p1) + q̄(p2) → g(p3) + Z(p4)

Status: 

Pheno @ NNLO including only vector-like couplings of singlet type

 — axial coupling neglected in singlet contributions — 

Need to include top+bottom to get consistent result (anomaly!)

γμγ5

Z

Amplitudes [Garland, Gerhmann et al ’02]
Pheno [Gehrmann-De Ridder et al ’17, ’18] etc etc



TENSOR DECOMPOSITION FOR CHIRAL THEORIES

Z

One issue for axial couplings is 
evanescent structures in chiral tensor



TENSOR DECOMPOSITION FOR CHIRAL THEORIES

Our method: only independent tensors in  are relevant,  we can span it with a 
basis of vectors in :  , plus the fourth parity-odd one

d = 4
d = 4 pμ

1 , pμ
2 , pμ

3

2 Vector + Axial tensor structure

In the parity odd case, we have one more vector to build our tensor structures, namely the axial vector
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⌫
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�
3 = ✏p1p2p3µ = vµA.

To get all tensor structures this time, we need to consider this vector as well. Since we are in d = 4 space-
time dimensions, we can make a choice and use as independent vectors pµi , i = 1, 2, 3 and vµA. This implies
also that we do not need to use objects like ✏pipjµ⌫ for the decomposition, since they can all be written as
combinations of the four independent vectors pµi and vµA . Note also that

pi · vA = 0 , vA · vA = ✏p1p2p3µ✏p1p2p3µ =
d� 3

4
s12s13s23 . (5)

We can start from eq. (2) and try to add the corresponding axial part. One has to pay attention here
because, since we have an extra independent vector at disposal, the counting of degrees of freedom has to
be made in a consistent way. It turns out that, having the extra vector vµA actually helps with making the
procedure very transparent, as it happens for 2 ! 3 scattering and it allows to rephrase in a clearer way also
the purely vector part of the tensor structure. In fact, let us use qµi = {pµ1 , p

µ
2 , p

µ
3 , v

µ
A} as vectors to span the

four dimensional space and express all other tensors through them. In this way we can write
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âiq
µ
i , gµ⌫ =

4X

i,j=1

cijq
µ
i q

µ
j

where âi must be linear combinations of /qi and their exact form, as that of the coe�cients cij does not
matter for what follows. Using this basis, we can therefore decompose the amplitude as
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We use throughout the letter Fi for the form factors that are parity even, and Gi for those that are parity
odd. Note that the Fi used here are di↵erent from the ones in eq. (2), but it should always be possible to
write them as linear combinations of those.

Let us define the vector of the 12 form factors Fi = {F1, .., F6, G1, ..., G6} and write the amplitude as

AAV =
12X

i=1

FiT i

The projectors can then be defined starting from the matrix
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pol

T
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and computing its inverse. For the latter, we get
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4 And alternative version of the tensor decomposition

Starting from the decomposition given in eq. (6), which we report here for simplicity
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it is easy to obtain an alternative decomposition, that has the advantage of involving at most one occurrence
of the parity odd vector vµA. One could argue that fewer occurrences of vµA make it easier to apply the
projectors on the amplitude, since one always needs to contract at most one pair of Levi-Civita tensors.
The new decomposition can be obtained by realising that, since pµi and vµA are a complete basis in d = 4
dimensions, the rank two tensor gµ⌫ can be written as
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where again the exact form of the coe�cients cij and b is immaterial. What is important is that, inverting
this relation and using the fact that all tensors involving products of pµi p
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j are already included in the

tensor basis, one can e↵ectively substitute vµAv
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A ⇠ gµ⌫ everywhere in the tensor decomposition, giving the
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where Ki are the parity even form factors and Rj the parity odd ones. Note that for form factor G6 ! R6

there are actually three equivalent choices,
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The projector matrix is as expected less sparse in this case. Interestingly, it looks like that with the last
choice, namely decomposing the amplitude as
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the axial form factors at tree level are independent on the dimensions d ! (this statement should be checked).
In particular, doing all the algebra exactly in d dimensions, I find for the tree level form factors

R1 = �
s(u� t) + u(3t+ u)

st2u2
, R2 =

st� su+ t2 + 3tu

st2u2
, R3 =

4s+ t+ 3u
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, (17)

R4 =
2
�
2s2 + s(t+ 3u) + u(u� t)

�

s2t2u
, R5 =

2
�
2s2 + s(3t+ u) + t(t� u)
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, R6 =

t� u
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(18)
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With these, a possible basis can be written as: (could be further optimised for singlet contributions)

Z

One issue for axial couplings is 
evanescent structures in chiral tensor

[Gehrmann, Peraro, Tancredi to appear soon]



TENSOR DECOMPOSITION FOR CHIRAL THEORIES

2 Vector + Axial tensor structure

In the parity odd case, we have one more vector to build our tensor structures, namely the axial vector
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To get all tensor structures this time, we need to consider this vector as well. Since we are in d = 4 space-
time dimensions, we can make a choice and use as independent vectors pµi , i = 1, 2, 3 and vµA. This implies
also that we do not need to use objects like ✏pipjµ⌫ for the decomposition, since they can all be written as
combinations of the four independent vectors pµi and vµA . Note also that
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4
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We can start from eq. (2) and try to add the corresponding axial part. One has to pay attention here
because, since we have an extra independent vector at disposal, the counting of degrees of freedom has to
be made in a consistent way. It turns out that, having the extra vector vµA actually helps with making the
procedure very transparent, as it happens for 2 ! 3 scattering and it allows to rephrase in a clearer way also
the purely vector part of the tensor structure. In fact, let us use qµi = {pµ1 , p
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where âi must be linear combinations of /qi and their exact form, as that of the coe�cients cij does not
matter for what follows. Using this basis, we can therefore decompose the amplitude as
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We use throughout the letter Fi for the form factors that are parity even, and Gi for those that are parity
odd. Note that the Fi used here are di↵erent from the ones in eq. (2), but it should always be possible to
write them as linear combinations of those.

Let us define the vector of the 12 form factors Fi = {F1, .., F6, G1, ..., G6} and write the amplitude as

AAV =
12X

i=1
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The projectors can then be defined starting from the matrix
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4 And alternative version of the tensor decomposition

Starting from the decomposition given in eq. (6), which we report here for simplicity
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it is easy to obtain an alternative decomposition, that has the advantage of involving at most one occurrence
of the parity odd vector vµA. One could argue that fewer occurrences of vµA make it easier to apply the
projectors on the amplitude, since one always needs to contract at most one pair of Levi-Civita tensors.
The new decomposition can be obtained by realising that, since pµi and vµA are a complete basis in d = 4
dimensions, the rank two tensor gµ⌫ can be written as

gµ⌫ =
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i,j

cijp
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⌫
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⌫
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where again the exact form of the coe�cients cij and b is immaterial. What is important is that, inverting
this relation and using the fact that all tensors involving products of pµi p

µ
j are already included in the

tensor basis, one can e↵ectively substitute vµAv
⌫
A ⇠ gµ⌫ everywhere in the tensor decomposition, giving the

alternative form
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where Ki are the parity even form factors and Rj the parity odd ones. Note that for form factor G6 ! R6

there are actually three equivalent choices,
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The projector matrix is as expected less sparse in this case. Interestingly, it looks like that with the last
choice, namely decomposing the amplitude as
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A + ū(p2)�

⌫u(p1)v
µ
A)

⇤
, (16)

the axial form factors at tree level are independent on the dimensions d ! (this statement should be checked).
In particular, doing all the algebra exactly in d dimensions, I find for the tree level form factors
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4

The counting is straightforward:  

➤ 2 helicities for the  line (massless) 

➤ 2 helicities for the (physical) gluon 

➤ 3 helicities for the (physical) Z boson

qq̄
Gives a total of = 12 
helicity amplitudes 

matched by the number of 
tensors and form factors}

Note that manipulations are done in tHV / Larin scheme

[Gehrmann, Peraro, Tancredi to appear soon]
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Starting from the decomposition given in eq. (6), which we report here for simplicity
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it is easy to obtain an alternative decomposition, that has the advantage of involving at most one occurrence
of the parity odd vector vµA. One could argue that fewer occurrences of vµA make it easier to apply the
projectors on the amplitude, since one always needs to contract at most one pair of Levi-Civita tensors.
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the axial form factors at tree level are independent on the dimensions d ! (this statement should be checked).
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[Gehrmann, Peraro, Tancredi to appear soon]

NATURAL SOLUTION FOR GAMMA5 IN LARIN’S SCHEME

tensors and projectors contain *at most* one occurrence of  
 never appears in the tensor decomposition! 
very natural to be applied in Larin-Scheme

ϵμνρσ

γ5



NATURAL SOLUTION FOR GAMMA5 IN LARIN’S SCHEME

4.1 One-loop axial singlet contribution

Computing the one loop contribution from those diagrams where the vector boson V is attached on a fermion
loop, we get the following result for the form factors
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Example: One-loop singlet form factors

At one loop there is only 1 form factor effectively

Z



=
N

∑
i=1

Ri(x1, . . . , xr) ℐi(x1, . . . , xn)

MASTER INTEGRALS: ANALYTIC COMPLEXITY
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MASTER INTEGRALS: ANALYTIC COMPLEXITY

=
N

∑
i=1

Ri(x1, . . . , xr) ℐi(x1, . . . , xn)

Scattering amplitude has (poles and) branch cuts — encoded in master integrals!



GEOMETRY AND FEYNMAN INTEGRALS

G(c1, ..., ck;x) =

Z x

0
dt r(c1, t)G(c2, ..., ck; t) , r(c, t) =

1

t� c
c 2 C
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Iterated integrals on the Riemann Sphere ~ multiple polylogarithms



GEOMETRY AND FEYNMAN INTEGRALS
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QED Mass-independent term: 2-loop contribution
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= −0.328 478 965 579 . . .

obtained independently by Petermann and Sommerfield in 1957.

(The two-loop coefficient was also computed analytically by Karplus and Kroll in 1950, but

unfortunately their result was wrong)

Stefano Laporta, Climbing the mountain: the electron g-2, Inspired by precision, Bologna, 10 Dec 2021 Page 8

QED Mass-independent term: 3-loop contribution
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• The final analytical expression was obtained by S.L. and Ettore Remiddi in 1996.

• Ettore Remiddi begun the analytical calculation of C3 in 1969. I joined him and his group in

Bologna in 1989 as a graduate student.

• In 1989 there were 21 diagrams (3groups) still not known analytically. It took us 7 years to complete

the analytical calculations.
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G(c1, ..., ck;x) =

Z x

0
dt r(c1, t)G(c2, ..., ck; t) , r(c, t) =

1

t� c
c 2 C
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Iterated integrals on the Riemann Sphere ~ multiple polylogarithms

 the famous g-2 calculation, by now known to 5 loops numerically⟶

= +0.50000000...

= −0.328478965...

= +1.181241456...
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QED Mass-independent term: 2-loop contribution
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QED Mass-independent term: 3-loop contribution
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• In 1989 there were 21 diagrams (3groups) still not known analytically. It took us 7 years to complete

the analytical calculations.
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QED Mass-independent term: 2-loop contribution
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aQED
e = C1

(α

π

)

+ C2

(α

π

)2
+ C3

(α

π

)3
+ C4

(α

π

)4
+ C5

(α

π

)5
+ . . .

7 diagrams

C2 =
197

144
+

1

12
π2

−
1

2
π2 ln 2 +

3

4
ζ(3)

= −0.328 478 965 579 . . .

obtained independently by Petermann and Sommerfield in 1957.

(The two-loop coefficient was also computed analytically by Karplus and Kroll in 1950, but

unfortunately their result was wrong)

Stefano Laporta, Climbing the mountain: the electron g-2, Inspired by precision, Bologna, 10 Dec 2021 Page 8

QED Mass-independent term: 3-loop contribution
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[Laporta, Remiddi ’97]

[Petermann, Sommerfield ’57]

[Schwinger ’48]

G(c1, ..., ck;x) =

Z x

0
dt r(c1, t)G(c2, ..., ck; t) , r(c, t) =

1

t� c
c 2 C
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Iterated integrals on the Riemann Sphere ~ multiple polylogarithms

 the famous g-2 calculation, by now known to 5 loops numerically⟶
[Kinoshita et al]



GEOMETRY AND FEYNMAN INTEGRALS

QED Mass-independent term: 1-loop contribution

aQED
e = C1

(α

π

)

+ C2

(α

π

)2
+ C3

(α

π

)3
+ C4

(α

π

)4
+ C5

(α

π

)5
+ . . .

1 diagram

C1 =
1

2

Obtained by Julian Schwinger in 1948

Stefano Laporta, Climbing the mountain: the electron g-2, Inspired by precision, Bologna, 10 Dec 2021 Page 7

QED Mass-independent term: 2-loop contribution
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QED Mass-independent term: 3-loop contribution
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obtained independently by Petermann and Sommerfield in 1957.

(The two-loop coefficient was also computed analytically by Karplus and Kroll in 1950, but

unfortunately their result was wrong)
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[Laporta, Remiddi ’97]

[Petermann, Sommerfield ’57]

G(c1, ..., ck;x) =

Z x

0
dt r(c1, t)G(c2, ..., ck; t) , r(c, t) =

1

t� c
c 2 C
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Iterated integrals on the Riemann Sphere ~ multiple polylogarithms

[Kinoshita et al]

 the famous g-2 calculation, by now known to 5 loops numerically⟶

[Schwinger ’48]



BEYOND GENUS 0
Riemann sphere too simple, Feynman integrals involve more interesting geometries 

First non-trivial case with famous sunrise graph received a lot of attention in past decade
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The sunrise integral



BEYOND GENUS 0
Riemann sphere too simple, Feynman integrals involve more interesting geometries 

First non-trivial case with famous sunrise graph received a lot of attention in past decade

di↵erential equation which is identical to the definition of the elliptic curve in eq. (2.6),

namely

(c4
0(z))2 = P4((z)) , (2.20)

and thus one may identify (x, y) $ ((z), c40(z)). The inverse of the -function is known

as Abel’s map, which takes a point (x, y) on the elliptic curve to a point zx on the complex

torus,

zx =
c4

!1

Z
x

a1

dx
0

y
=

p
a13a24

4K(�)

Z
x

a1

dx
0

y
. (2.21)

Since elliptic curves are isomorphic to complex tori, eMPLs can be described as iterated

integrals over functions related to the torus, and were originally defined as such in refs. [25,

68, 69]. In this context, eMPLs are defined as iterated integrals given by

e�( n1 ... nk
z1 ... zk ; z, ⌧) =

Z
z

0
dz

0
g
(n1)(z0 � z1, ⌧) e�

�
n2 ... nk
z2 ... zk ; z

0
, ⌧
�
, (2.22)

where the integration kernels are the coe�cients in the expansion of theKronecker-Eisenstein

series F (z,↵, ⌧),

F (z,↵, ⌧) =
1

↵

X

n�0

g
(n)(z, ⌧)↵n =

✓
0
1(0, ⌧) ✓1(z + ↵, ⌧)

✓1(z, ⌧) ✓1(↵, ⌧)
, (2.23)

and ✓1(z, ⌧) is the odd Jabobi theta function with ✓
0
1(z, ⌧) denoting a derivative with respect

to its first argument.

The eMPLs (2.22) behave similarly to ordinary MPLs in that they also form a shu✏e

algebra and are unipotent. Moreover, they are pure according to the definition of ref. [52],

namely: A function is called pure if it is unipotent and its total di↵erential involves only

pure functions and one-forms with at most logarithmic singularities.

In the calculation of Feynman integrals that evaluate to functions of the elliptic kind,

the representation of elliptic polylogarithms in terms of a polynomial equation y
2 = P (x)

appears more naturally than the torus picture. Therefore in this paper we use the definition

of pure eMPLs on the elliptic curve recently put forward in ref. [52]. They are defined as

iterated integrals of kernels that are rational functions on the elliptic curve with at most

logarithmic singularities in all variables,

E4( n1 ... nk
c1 ... ck ;x,~a) =

Z
x

0
dt n1(c1, t,~a) E4(

n2 ... nk
c2 ... ck ; t,~a) . (2.24)

In contrast with MPLs, for the elliptic case the requirement that all integrations over

rational functions on the elliptic curve close on the same space of functions put together

with the requirement that all integrals must have at most logarithmic singularities leads

to an infinite tower of independent kernels  n for n 2 Z. This fact can also be seen from

the torus description, where an infinite number of kernels are generated by eq. (2.23).

In particular, the kernels in eq. (2.24) depend on a certain kind of functions which are

themselves transcendental, namely

Z4(x,~a) ⌘
Z

x

a1

dx
0�4(x

0
,~a) , with �4(x,~a) ⌘ e�4(x,~a) + 4c4

⌘1

!1

1

y
, (2.25)
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[Brown, Levin ’11; Adams, Weinzierl ’13,’15; Broedel, Duhr, Dulat, Penante, Tancredi 
’17,’18,’19; Broedel, Mafra, Matthes, Schlotterer ’15,’16]

One dimensional surfaces of genus 1  elliptic curves⟶
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HIGHER GENERA AND HIGHER DIMENSIONS 

Even genus 1 is not enough, even at two loops…

Examples of Higher genera 
l1

l2

k1

k2

k3k4

m1

m1

m1

m3

m3m2

m2

Figure 3. Nonplanar double box

5.1 Maximal Unitarity and geometric properties

The denominators for the Fig. 3 are,

D1 = l21 −m2
1 , D2 = (l1 − k1)

2 −m2
1 , D3 = (l1 − k1 − k2)

2 −m2
1 ,

D4 = l22 −m2
3 , D5 = (l2 − k3)

2 −m2
3 , D6 = (l1 − l2 + k4)

2 −m2
2 ,

D7 = (l1 + l2)
2 −m2

2 .

(5.1)

The on-shell constrains are

D1 = . . . = D7 = 0, (5.2)

We use the same loop momenta parametrization (3.2). Again, we first solve for α1, α2, α3,

β1, β2 and β4 in terms of α4 and β3,

α1 = 1 , α2 = 0 , α3 =
m2

1t(s+ t)

α4s3
,

β1 = −(α4 + α3 +
t

s
) , β2 = 0 , β4 =

(m2
3)t(s+ t)

β3s3
.

(5.3)

The rest two variables satisfy a polynomial equation,

K(α4,β3) = A(α4)β
2
3 +B(α4)β3 + C(α4) = 0, (5.4)

whose solution can be formally represented as,

β3 =
−B(α4)±

√

∆(α4)

2A(α4)
, ∆ ≡ B2 − 4AC (5.5)

Unlike the previous examples, ∆(α4) here is a degree-8 polynomial in α4 with 8 distinct

roots. Hence the unitarity cut of this diagram provides a genus-3 hyperelliptic curve. (See
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Genus 3

[Georgoudis, Zhang ’15]
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Figure 7. (a) Non-planar three-loop box-crossed-pentagon diagram,(b) Non-planar three-loop
crossed-crossed-pentagon diagram. All external momenta are out-going and massive. The loop
momenta are denoted by !1, !2, !3.

From on-shell equations Di = 0 we can parameterize !1 rationally by one free parameter

x. Similarly, there are 3 propagators containing only !3,

D̄0 = !23 , D̄1 = (!3 − p4)
2 , D̄ = (!3 − p1 − p2 − p3 − p4 − p9)

2 . (5.16)

Using on-shell equations D̄i = 0, !3 is rationally parameterized by one free parameter w.

However, only 2 propagators

D̃0 = !22 , D̃1 = (!2 − p6)
2 (5.17)

containing single loop momentum !2, so !2 is rationally parameterized by 2 free parameters,

namely, y and z from on-shell equations D̃i = 0.

The remaining 3 propagators contain terms of mixed loop momenta,

D̂0 = (!2 − !3 − p5 − p6)
2 , D̂1 = (!2 − !3 − p5 − p6 − p7)

2 ,

D̂2 = (!1 + !3 − p1 − p2 − p3 − p4)
2 . (5.18)

After substituting !1(x), !2(y, z), !3(w) back, they become meromorphic functions. The

numerators f1, f2, f3 of these 3 meromorphic functions are polynomials in (x, y, z, w), and

equations

f1(y, z, w) = f2(y, z, w) = f3(x,w) = 0 (5.19)

define the algebraic curve. They are not necessary quadratic.

Our strategy is to eliminate y and w from the equations and then get a plane curve in

x and z. This can be done automatically by Gröbner basis method. However, it is helpful

to eliminate y and w step by step, so that we can explicitly show this projection process

is birational. Furthermore, we can see the induction relation from the two-loop non-planer

diagram to this diagram.
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Examples of Higher genera 

[Huang, Zhang ’13]
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Genus 3

Examples known up to genus 13
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[Picture from: Kozłowska-Walania ‘20]
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p2 p2

m1

m2

m3

ml+1

Figure 1. The l-loop banana graph with external momentum p and internal masses mi.

the integral only depends on the propagator masses and the dot products between the
external momenta. We refer to these collectively as the scales xk, and we collect them
into the vector x = (xk)1ÆkÆN . By dimensional analysis, the only non-trivial functional
dependence is through the ratios

zk := xk+1/x1 , 1 Æ k < N . (2.2)

It is well known that not all the integrals in this family are independent. We can
use integration-by-parts (IBP) relations to write every member of this family as a linear
combination of a certain set of basis elements, conventionally referred to as master inte-
grals [95, 96]. The basis of master integrals is known to be always finite [97–99]. In the
following it will be useful to group the members of the family into sectors, i.e., integrals that
share the same set of denominators in the integrand in eq. (2.1) (though the denominators
may be raised to di�erent powers). More precisely, consider the map Ë : Zp æ {0, 1}p

which sends ‹ = (‹j)1ÆjÆp to Ë(‹) = (◊(‹j))1ÆjÆp, where ◊(m) denotes the Heaviside step
function:

◊(m) =
I

1 , if m > 0 ,

0 , if m Æ 0 .
(2.3)

We say that I‹(x; D) and I‹Õ(x; D) belong to the same sector if Ë(‹) = Ë(‹ Õ). There is a
natural partial order on sectors, given by Ë(‹) Æ Ë(‹ Õ) if and only if ◊(‹ Õ

i) ≠ ◊(‹i) Ø 0, for
all 1 Æ i Æ p.

We work in dimensional regularization, and each member of this family is interpreted
as a Laurent series in the dimensional regularization parameter ‘ = (D0 ≠ D)/2, with D0

a positive integer, cf., e.g., ref. [100]. For algebraic values of the scales x, the Laurent
coe�cients are periods [1] in the sense of Kontsevich and Zagier [2]. This motivates the
use of techniques from algebraic geometry to compute Feynman integrals. One of the
main goals of this paper is to study how some methods from geometry to compute periods
can be used to compute multi-loop Feynman integrals in dimensional regularization. Our
recurrent example will be a special class of l-loop Feynman integrals in D = 2 ≠ 2‘ with at
most p = l + 1 propagators, known as banana integrals (see figure 1), and the propagators
are given by

Dj = k2

j ≠ m2

j , 1 Æ j Æ l ,

Dl+1 = (k1 + . . . + kl ≠ p)2 ≠ m2

l+1 .
(2.4)
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use of techniques from algebraic geometry to compute Feynman integrals. One of the
main goals of this paper is to study how some methods from geometry to compute periods
can be used to compute multi-loop Feynman integrals in dimensional regularization. Our
recurrent example will be a special class of l-loop Feynman integrals in D = 2 ≠ 2‘ with at
most p = l + 1 propagators, known as banana integrals (see figure 1), and the propagators
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Fuchs operator in terms of usual derivatives

Ll =
lÿ

k=0

Bl,k(z)ˆk
z , (4.2)

where the Bl,k(z) are polynomials. The Wronskian can then be chosen as:

Wl(z) :=

Q

ccccca

Èl,0(z) Èl,1(z) . . . Èl,l≠1(z)
ˆzÈl,0(z) ˆzÈl,1(z) . . . ˆzÈl,l≠1(z)

...
...

...

ˆl≠1
z Èl,0(z) ˆl≠1

z Èl,1(z) . . . ˆl≠1
z Èl,l≠1(z)

R

dddddb
, (4.3)

and we have J�

l (z) = Wl(z)–�, cf. eq. (2.29). The determinant of the Wronskian is

det Wl(z) =
1
(≠1)lz≠3 Disc(Ll)

2≠l/2

=

Q

azl≠3
Ÿ

kœ�(l)

(1 ≠ kz)

R

b
≠l/2

, (4.4)

where Disc(Ll) is given in eq. (2.43). To prove this identity, first note that from ˆzWl(z) =
Bl,0(z)Wl(z) it follows that

ˆz det Wl(z) = Tr Bl,0(z) det Wl(z) , (4.5)

where for our choice of basis Bl,0(z) has the form

Bl,0(z) =

Q

cccccccca

0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

...

0 0 0 . . . 1
≠Bl,0(z)

Bl,l(z)
≠Bl,1(z)

Bl,l(z)
≠Bl,2(z)

Bl,l(z)
. . . ≠Bl,l≠1(z)

Bl,l(z)

R

ddddddddb

. (4.6)

Computing the operator Ll with the procedure explained in ref. [73], one finds that

Bl,l(z) = Disc(Ll) = (≠z)l
Ÿ

kœ�(l)

(1 ≠ kz) ,

Bl,l≠1(z) = l

2

3
ˆzBl,l(z) ≠ 3

z
Bl,l(z)

4
.

(4.7)

This gives

Tr Bl,0(z) = ≠Bl,l≠1(z)
Bl,l(z) = l

2

Q

a3 ≠ l

z
+

ÿ

kœ�(l)

k

1 ≠ kz

R

b . (4.8)

It is then easy to see that the determinant is proportional to the right-hand side of eq. (4.4),
and the constant of proportionality is fixed by our normalization of the Frobenius basis.

As explained in section 2.2, the Wronskian and its inverse play important roles when
solving the Gauss-Manin system satisfied by the Feynman integrals. The elements of
the inverse Wronskian are (l ≠ 1) ◊ (l ≠ 1) minors of Wl(z), i.e., they are homegeneous
polynomials of degree l ≠ 1 in the entries of Wl(z). It seems from eq. (2.18) that the
integrand of the iterated integrals will involve polynomials of degree (l ≠ 1), and beyond
the leading order in ‘ even of degree l. In the following we show that the quadratic relations
from Gri�ths transversality from section 3.2.3 allow one to reduce this degree considerably.
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implies that we can always find a basis in which ÂA(z; ‘) is block-triangular. We can order
the master integrals such that

J(z; ‘) = (J1(z; ‘)T , . . . , Js(z; ‘)T )T , (2.13)

where the elements of Jr(z; ‘) share exactly the same propagators, i.e., they belong to
the same sector. The master integrals in each sector satisfy an inhomogeneous di�erential
equation of the type

dJr(z; ‘) = Br(z; ‘) Jr(z; ‘) + N r(z; ‘) , 1 Æ r Æ s . (2.14)

where the inhomogeneity N r(z; ‘) collects contributions from Feynman integrals from lower
sectors, which we assume to be known. The associated homogeneous equation, obtained by
putting N r(z; ‘) to zero, is the di�erential equation satisfied by the maximal cuts of Jr(z; ‘),
defined, loosely speaking, by putting all the propagators in eq. (2.1) on shell [81, 82, 107].
If the basis J(z; ‘) is ‘-regular, then so are Br(z; ‘) and N r(z; ‘). We define Br,0(z) :=
lim‘æ0 Br(z; ‘).

Assume that we have found the general solution to the homogeneous equation for ‘ = 0.
If Jr(z; ‘) has Mr elements, this general solution can be conveniently cast in the form of
an Mr ◊ Mr matrix Wr(z) (called the Wronskian matrix):

dWr(z) = B0,r(z) Wr(z) . (2.15)

Since the columns of Wr(z) form a basis for the solution space, this matrix must have full
rank (for generic values of z). Letting

Lr(z; ‘) = Wr(z)≠1 Jr(z; ‘) , (2.16)

we obtain the equation

dLr(z; ‘) = ÂBr(z; ‘) Lr(z; ‘) + ÂN r(z; ‘) , (2.17)

with

ÂBr(z; ‘) = Wr(z)≠1 [Br(z; ‘) ≠ Br,0(z)] Wr(z) ,

ÂN r(z; ‘) = Wr(z)≠1N r(z; ‘) .
(2.18)

Note that by construction we have lim‘æ0
ÂBr(z; ‘) = 0. Hence, we can easily solve the

Gauss-Manin system in eq. (2.17) order-by-order in ‘. Since Lr and N r must be regular at
‘ = 0, they admit a Taylor expansion:

Lr(z; ‘) =
Œÿ

k=0

‘k L(k)

r (z) and ÂN r(z; ‘) =
Œÿ

k=0

‘k ÂN
(k)

r (z) . (2.19)

In particular, the leading order in ‘ leads to the equation:

dL(0)

r (z) = ÂN
(0)

r (z) , (2.20)
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the integral only depends on the propagator masses and the dot products between the
external momenta. We refer to these collectively as the scales xk, and we collect them
into the vector x = (xk)1ÆkÆN . By dimensional analysis, the only non-trivial functional
dependence is through the ratios

zk := xk+1/x1 , 1 Æ k < N . (2.2)

It is well known that not all the integrals in this family are independent. We can
use integration-by-parts (IBP) relations to write every member of this family as a linear
combination of a certain set of basis elements, conventionally referred to as master inte-
grals [95, 96]. The basis of master integrals is known to be always finite [97–99]. In the
following it will be useful to group the members of the family into sectors, i.e., integrals that
share the same set of denominators in the integrand in eq. (2.1) (though the denominators
may be raised to di�erent powers). More precisely, consider the map Ë : Zp æ {0, 1}p

which sends ‹ = (‹j)1ÆjÆp to Ë(‹) = (◊(‹j))1ÆjÆp, where ◊(m) denotes the Heaviside step
function:

◊(m) =
I

1 , if m > 0 ,

0 , if m Æ 0 .
(2.3)

We say that I‹(x; D) and I‹Õ(x; D) belong to the same sector if Ë(‹) = Ë(‹ Õ). There is a
natural partial order on sectors, given by Ë(‹) Æ Ë(‹ Õ) if and only if ◊(‹ Õ

i) ≠ ◊(‹i) Ø 0, for
all 1 Æ i Æ p.

We work in dimensional regularization, and each member of this family is interpreted
as a Laurent series in the dimensional regularization parameter ‘ = (D0 ≠ D)/2, with D0

a positive integer, cf., e.g., ref. [100]. For algebraic values of the scales x, the Laurent
coe�cients are periods [1] in the sense of Kontsevich and Zagier [2]. This motivates the
use of techniques from algebraic geometry to compute Feynman integrals. One of the
main goals of this paper is to study how some methods from geometry to compute periods
can be used to compute multi-loop Feynman integrals in dimensional regularization. Our
recurrent example will be a special class of l-loop Feynman integrals in D = 2 ≠ 2‘ with at
most p = l + 1 propagators, known as banana integrals (see figure 1), and the propagators
are given by

Dj = k2

j ≠ m2

j , 1 Æ j Æ l ,

Dl+1 = (k1 + . . . + kl ≠ p)2 ≠ m2

l+1 .
(2.4)
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Fuchs operator in terms of usual derivatives

Ll =
lÿ

k=0

Bl,k(z)ˆk
z , (4.2)

where the Bl,k(z) are polynomials. The Wronskian can then be chosen as:

Wl(z) :=

Q

ccccca

Èl,0(z) Èl,1(z) . . . Èl,l≠1(z)
ˆzÈl,0(z) ˆzÈl,1(z) . . . ˆzÈl,l≠1(z)

...
...

...

ˆl≠1
z Èl,0(z) ˆl≠1

z Èl,1(z) . . . ˆl≠1
z Èl,l≠1(z)

R

dddddb
, (4.3)

and we have J�

l (z) = Wl(z)–�, cf. eq. (2.29). The determinant of the Wronskian is

det Wl(z) =
1
(≠1)lz≠3 Disc(Ll)

2≠l/2

=

Q

azl≠3
Ÿ

kœ�(l)

(1 ≠ kz)

R

b
≠l/2

, (4.4)

where Disc(Ll) is given in eq. (2.43). To prove this identity, first note that from ˆzWl(z) =
Bl,0(z)Wl(z) it follows that

ˆz det Wl(z) = Tr Bl,0(z) det Wl(z) , (4.5)

where for our choice of basis Bl,0(z) has the form

Bl,0(z) =

Q

cccccccca

0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

...

0 0 0 . . . 1
≠Bl,0(z)

Bl,l(z)
≠Bl,1(z)

Bl,l(z)
≠Bl,2(z)

Bl,l(z)
. . . ≠Bl,l≠1(z)

Bl,l(z)

R

ddddddddb

. (4.6)

Computing the operator Ll with the procedure explained in ref. [73], one finds that

Bl,l(z) = Disc(Ll) = (≠z)l
Ÿ

kœ�(l)

(1 ≠ kz) ,

Bl,l≠1(z) = l

2

3
ˆzBl,l(z) ≠ 3

z
Bl,l(z)

4
.

(4.7)

This gives

Tr Bl,0(z) = ≠Bl,l≠1(z)
Bl,l(z) = l

2

Q

a3 ≠ l

z
+

ÿ

kœ�(l)

k

1 ≠ kz

R

b . (4.8)

It is then easy to see that the determinant is proportional to the right-hand side of eq. (4.4),
and the constant of proportionality is fixed by our normalization of the Frobenius basis.

As explained in section 2.2, the Wronskian and its inverse play important roles when
solving the Gauss-Manin system satisfied by the Feynman integrals. The elements of
the inverse Wronskian are (l ≠ 1) ◊ (l ≠ 1) minors of Wl(z), i.e., they are homegeneous
polynomials of degree l ≠ 1 in the entries of Wl(z). It seems from eq. (2.18) that the
integrand of the iterated integrals will involve polynomials of degree (l ≠ 1), and beyond
the leading order in ‘ even of degree l. In the following we show that the quadratic relations
from Gri�ths transversality from section 3.2.3 allow one to reduce this degree considerably.
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implies that we can always find a basis in which ÂA(z; ‘) is block-triangular. We can order
the master integrals such that

J(z; ‘) = (J1(z; ‘)T , . . . , Js(z; ‘)T )T , (2.13)

where the elements of Jr(z; ‘) share exactly the same propagators, i.e., they belong to
the same sector. The master integrals in each sector satisfy an inhomogeneous di�erential
equation of the type

dJr(z; ‘) = Br(z; ‘) Jr(z; ‘) + N r(z; ‘) , 1 Æ r Æ s . (2.14)

where the inhomogeneity N r(z; ‘) collects contributions from Feynman integrals from lower
sectors, which we assume to be known. The associated homogeneous equation, obtained by
putting N r(z; ‘) to zero, is the di�erential equation satisfied by the maximal cuts of Jr(z; ‘),
defined, loosely speaking, by putting all the propagators in eq. (2.1) on shell [81, 82, 107].
If the basis J(z; ‘) is ‘-regular, then so are Br(z; ‘) and N r(z; ‘). We define Br,0(z) :=
lim‘æ0 Br(z; ‘).

Assume that we have found the general solution to the homogeneous equation for ‘ = 0.
If Jr(z; ‘) has Mr elements, this general solution can be conveniently cast in the form of
an Mr ◊ Mr matrix Wr(z) (called the Wronskian matrix):

dWr(z) = B0,r(z) Wr(z) . (2.15)

Since the columns of Wr(z) form a basis for the solution space, this matrix must have full
rank (for generic values of z). Letting

Lr(z; ‘) = Wr(z)≠1 Jr(z; ‘) , (2.16)

we obtain the equation

dLr(z; ‘) = ÂBr(z; ‘) Lr(z; ‘) + ÂN r(z; ‘) , (2.17)

with

ÂBr(z; ‘) = Wr(z)≠1 [Br(z; ‘) ≠ Br,0(z)] Wr(z) ,

ÂN r(z; ‘) = Wr(z)≠1N r(z; ‘) .
(2.18)

Note that by construction we have lim‘æ0
ÂBr(z; ‘) = 0. Hence, we can easily solve the

Gauss-Manin system in eq. (2.17) order-by-order in ‘. Since Lr and N r must be regular at
‘ = 0, they admit a Taylor expansion:

Lr(z; ‘) =
Œÿ

k=0

‘k L(k)

r (z) and ÂN r(z; ‘) =
Œÿ

k=0

‘k ÂN
(k)

r (z) . (2.19)

In particular, the leading order in ‘ leads to the equation:

dL(0)

r (z) = ÂN
(0)

r (z) , (2.20)
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The “Wronskian”

“Periods” of the CY 

Independent “ways” how you can move along the surface

Solution obtained integrating  over the inverse WronskianNr

[Bönisch, Duhr, Fischbach, Klemm, Nega ’21]
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A curious generalisation The Ice (cream) cone graphs

k1
k2

p2
1 = 0 p2

2 = 0

s = (p1 + p2)2

...

kl≠1

klq
i

ki ≠ p1
q

i
ki + p2

Figure 1. The l-loop equal-mass ice cone graph build up from a (l ≠ 1)-loop banana graph and a
triangle. {fig:icecone}

products between the l loop momenta and the two external ones, such that in order to
define a so-called integral family for this problem, we need to add n = (l ≠1)(l +4)/2 extra
propagators or irreducible scalar products. While the choice made here is in principle
arbitrary, it is well known that a good choice of numerators can help to simplify the
problem. For our scopes, it is convenient to choose the numerators Nk with k = 1, ..., n as
follows
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for 3 Æ k Æ n , (2.2)

such that a generic integral in the ice cone family will take the form

I‹(s; d) =
⁄ Q

a
lŸ

j=1

ddki

ifid/2

R

b N
≠‹l+3
1 N

≠‹l+4
2 · · · N

≠‹l(l+5)/2
n

D‹1
1 · · · D

‹l+2
l+2

, (2.3)

where ‹ = {‹1, ..., ‹l+2; ‹l+3, ..., ‹l(l+5)/2}. In what follows, we will be particularly interested
in integrals where only the first two scalar products appear with powers larger than zero.
We will therefore use a shorthand notation dropping the last zero entries in the vector ‹

‹ = {‹1, ..., ‹l+2; ‹l+3, ‹l+4, 0, ..., 0} = {‹1, ..., ‹l+2; ‹l+3, ‹l+4}

and just write for the integrals
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In fact, as it will become clear below, it turns out that at any number of loops, the first
two numerators are all we need to define a good basis of master integrals for this problem.
Due to scale invariance we are also free to set m = 1, as we do later, such that all integrals
are only functions of the single variable s.
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We can prove that @ l loops its finite part 
contains two equivalent copies of the banana 

graph and nothing else 

2l-1 master integrals = 2(l-1) + 1

such that the maximal cut integral becomes

Cut [I1,...,1;0,0(s; 2)] Ã

j

C

dz3

(z3 + m2x)
1
z3 + m2

x

2Cut
Ë
Ban(l≠1)(z3)

È
. (2.11) {eq:baikov2}{eq:baikov2}

At this point, the next step is to analyse this integrand to determine what we will refer to as
its “generalised leading singularities” (GLS). We define GLS to be the integrals associated
to the di�erent integration contours (or cycles) that provide independent results. The GLS
will furnish a basis of solutions for the homogeneous di�erential equations satisfied by the
ice cone graph [1, 4]. Moreover, as we will see, their analysis will provide us with a way
to determine a good basis of master integrals, whose Gauss-Manin di�erential equation
assumes a particularly convenient block-diagonal form.

We start by noticing that the integrand in (2.11) has two simple poles at z3 = ≠m2x

and z3 = ≠m2/x. The two residues associated to these poles define the GLS. From
eq. (2.11), we notice that they can be evocatively written in terms of the corresponding
maximal cuts of the (l ≠ 1)-loop banana graph computed at special values of its argument

Ó
Cut

Ë
Ban(l≠1)(≠m2x)

È
, Cut

Ë
Ban(l≠1)(≠m2/x)

ÈÔ
. (2.12)

It is known that each maximal cut of the (l ≠ 1)-loop banana graph has in turn (l ≠ 1)
independent leading singularities, which can be expressed in terms of the independent
periods of a (l ≠ 2)-dimensional Calabi-Yau manifold [5? , 6]. We get in this way 2(l ≠ 1)
independent GLS in d = 2 space-time dimensions, organised in two copies of the periods
of the same (l ≠ 2)-dimensional Calabi-Yau manifold appearing in the banana graph.

This analysis has been done in d = 2 dimensions. We will see below that, in fact, once
we perform integration-by-parts in d dimensions for some explicit examples, the ice cone
graph turns out to have one more master integral in the top sector compared to the naive
analysis above, such that we have in total 2l ≠ 1 independent master integrals for the top
sector in d dimensions. Nevertheless, we can always chose the last master to be identically
zero in d = 2, using the fact that only 2(l ≠ 1) masters in the top sector are independent.
To achieve this, we use the construction proposed in [7] and consider, in particular, the
following integral in d space-time dimensions

Iextra(s; d) =
⁄

ddk

ifid/2
G(k, p1, p2)

((k ≠ p1)2 ≠ m2)((k + p2)2 ≠ m2) Ban(l≠1)(k2) , (2.13) {eq:extraI}{eq:extraI}

where G(k, p1, p2) is the Gram determinant of the three momenta, also referred to as
Schouten polynomial in ref. [7],

G(k, p1, p2) = s2

4 k · k ≠ s(k · p1)(k · p2) . (2.14) {eq:gram}{eq:gram}

There is nothing special about eq. (2.13) in general d dimensions and nothing forbids us
from choosing it as one element of our basis of master integrals for the ice cone family.
On the other hand, it is easy to see that in d = 2 dimensions the integral is identically
zero. This is the case because the integral is UV only UV, I think it is just convergent?
convergent and the Gram determinant of three momenta in two dimensions is zero.
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Two residues in d=2  two copies of the Banana graph evaluates at different points  → s = m2 (1 + x)2

x

[Duhr, Klemm, Nega, Tancredi, to appear soon]
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a basis of solutions. The explicit form of this rotation is given by

Q

cccca

I1
I2
I3
I4

R

ddddb
=

Q

cccca

1 0 0 0
1
x

3
x 0 0

0 0 1 0
0 0 ≠

1
x ≠

3
x

R

ddddb

Q

cccca

Ĩ1
Ĩ2
Ĩ3
Ĩ4

R

ddddb
. (2.20) {eq:rotl3}{eq:rotl3}

Now in the basis I(3) = (I0,0, I0,1, I0, I1, I2, I3, I4, I5) the Gauss-Manin equation is given by

d
dx

I(3) =
Q

ccccccccccccccca

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
2

(1≠x)(1+x) 0 1+x2
x(1≠x)(1+x) 0 0 0 0 0

0 0 0 0 1 0 0 0
0 0 3(1≠x)

x2(1+9x) ≠
1+3x

x2(1+x)(1+9x)
(1≠3x)(1+3x)
x(1+x)(1+9x) 0 0 0

0 0 0 0 0 0 1 0
0 0 ≠

3(1≠x)
x2(9+x) 0 0 ≠

3+x
x(1+x)(9+x) ≠

9+20x+3x2
x(1+x)(9+x) 0

0 0 0 0 0 0 0 0

R

dddddddddddddddb

I(3) .

(2.21) {eq:gm3}{eq:gm3}

Notice that there are only three non-trivial blocks in the Gauss-Manin system for the
three– as well as for the two-loop ice cone family, namely for the master integral I0 and
the two (l ≠ 1)-loop banana blocks. We expect that for a good choice of master integrals
this pattern will continue also to higher loops. Therefore, we suggest that for the general
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Relevant, for example, for 3 loop 
 with massive quarksgg → H

Last integral not independent in d=2, can be chosen to be zero, it decouples
[Remiddi, Tancredi ’13]
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A lot has been happening in multi-loop calculations 

A LOT of beautiful results are (almost continuously) being released:  
massless and now massive, recent first studies for massless , etc etc

2 → 3
2 → 4

I am truly sorry I did not review any of it :-)

I tried to show two developments I am involved with, to give a glimpse of some of 
the structures that appear in high precision calculations for the LCH

With a message for (mainly) young people: LHC physics requires messy 
calculations, we cannot avoid that, but there is a lot of “beauty” in pQFT, and it is a 
lot of fun to be looking for it, while “crunching numbers for cross sections” 



THANK YOU VERY MUCH!


