PROGRESS ON MULTILOOP CALCULATIONS

(MAINLY TWO EXAMPLES OF SOME DEVELOPMENTS I FIND INTERESTING)

Tools for High Precision LHC Simulations
Ringberg Castle - 1/11/2022

Lorenzo Tancredi - Technical University Munich

DISCLAIMER

Not trying to be a review, and therefore *not* complete in any way

Just giving an account of some problems I find interesting and that I have personally been working on in the past months

FROM LAGRANGIANS TO CROSS-SECTIONS

From Lagrangian to Cross-Section it's a long way

FROM LAGRANGIANS TO CROSS-SECTIONS

From Lagrangian to Cross-Section it's a long way

FROM LAGRANGIANS TO CROSS-SECTIONS

From Lagrangian to Cross-Section it's a long way

FROM AMPLITUDES TO INTEGRALS

Scattering Amplitudes

$\sim \mathscr{A}=\epsilon_{1}^{\mu_{1}} \cdots \epsilon_{n}^{\mu_{n}} \bar{v}(q) \Gamma_{\mu_{1}, \ldots, \mu_{n}} u(p)$

FROM AMPLITUDES TO INTEGRALS

Scattering Amplitudes

(Scalar) Feynman Integrals

$$
\mathscr{I}=\int \prod_{l=1}^{L} \frac{d^{D} k_{l}}{(2 \pi)^{D}} \frac{S_{1}^{b_{1}} \ldots S_{m}^{b_{m}}}{D_{1}^{a_{1}} \ldots D_{n}^{a_{n}}}
$$

with $S_{i} \in\left\{k_{i} \cdot k_{j}, \ldots, k_{i} \cdot p_{j}\right\}$

FROM AMPLITUDES TO INTEGRALS

Scattering Amplitudes

$$
\sim \mathscr{A}=\epsilon_{1}^{\mu_{1}} \cdots \epsilon_{n}^{\mu_{n}} \bar{v}(q) \Gamma_{\mu_{1}, \ldots, \mu_{n}} u(p)
$$

(Scalar) Feynman Integrals
$\mathscr{I}=\int \prod_{l=1}^{L} \frac{d^{D} k_{l}}{(2 \pi)^{D}} \frac{S_{1}^{b_{1}} \ldots S_{m}^{b_{m}}}{D_{1}^{a_{1}} \ldots D_{n}^{a_{n}}}$
with $S_{i} \in\left\{k_{i} \cdot k_{j}, \ldots, k_{i} \cdot p_{j}\right\}$

IBPs, Finite fields etc
differential equations
Feynman parameters
Numerical methods

Some analytic or numerical result for the amplitudes

SCALAR FEYNMAN INTEGRALS

From tensor reduction, huge number of scalar integrals ($g g \rightarrow g g @ 3$ loops $\sim 10^{7}$ integrals!) Standard Approach: divide et impera

SCALAR FEYNMAN INTEGRALS

From tensor reduction, huge number of scalar integrals ($g g \rightarrow g g @ 3$ loops $\sim 10^{7}$ integrals!) Standard Approach: divide et impera

Integration by parts identities \rightarrow master integrals
[Chetyrkin, Tkachov '81] \& many others: most recently finite fields, intersection theory etc

SCALAR FEYNMAN INTEGRALS

From tensor reduction, huge number of scalar integrals ($g g \rightarrow g g$ @ 3 loops $\sim 10^{7}$ integrals!) Standard Approach: divide et impera

$$
=\sum_{i=1}^{N} R_{i}\left(x_{1}, \ldots, x_{r}\right) \mathscr{J}_{i}\left(x_{1}, \ldots, x_{n}\right)
$$

SCALAR FEYNMAN INTEGRALS

From tensor reduction, huge number of scalar integrals ($g g \rightarrow g g @ 3$ loops $\sim 10^{7}$ integrals!) Standard Approach: divide et impera

Very complicated rational functions, hundreds of MBs for complicated processes:

Algebraic Complexity

SCALAR FEYNMAN INTEGRALS

From tensor reduction, huge number of scalar integrals ($g g \rightarrow g g @ 3$ loops $\sim 10^{7}$ integrals!) Standard Approach: divide et impera

Coefficients (processdependent)

Very complicated rational functions, hundreds of MBs for complicated processes:

Algebraic Complexity

Process-independent building
blocks: Master Integrals
Involved special
functions with
complicated mathematical
properties:
Analytic complexity

SCALAR FEYNMAN INTEGRALS

From tensor reduction, huge number of scalar integrals ($g g \rightarrow g g @ 3$ loops $\sim 10^{7}$ integrals!) Standard Approach: divide et impera

$$
=\sum_{i=1}^{N} R_{i}\left(x_{1}, \ldots, x_{r}\right) \mathscr{J}_{i}\left(x_{1}, \ldots, x_{n}\right)
$$

Extremely successful strategy: in the past 2 decades it has allowed us to overcome the two-loop frontier for $2 \rightarrow 2$ and $2 \rightarrow 3$ processes, with increasing number of scales (and masses), and recently opened the way to $2 \rightarrow 2$ three loop calculations

I will not review all these developments, there are way too many :-)

DECOMPOSITION INTO SCALAR INTEGRALS

$$
=\sum_{i=1}^{N} R_{i}\left(x_{1}, \ldots, x_{r}\right) \mathscr{F}_{i}\left(x_{1}, \ldots, x_{n}\right)
$$

DECOMPOSITION INTO SCALAR INTEGRALS

Scalar Feynman Integrals are what we know how to compute

TENSOR DECOMPOSITION

Projector-Form Factors method in a nutshell

1. Pick your favourite process, for example $q \bar{q} \rightarrow Z g$
2. Use Lorentz + gauge + any symmetry (parity, Bose etc...) to find minimal set of tensor structures in d space-time dimensions:

$$
\mathscr{A}=\sum_{j} F_{j} T_{j}
$$

3. Derive projectors operators to single out corresponding form factors: $\mathscr{P}_{j} \mathscr{A}=F_{j}$

$$
M_{i j}=\sum_{p o l} T_{i}^{\dagger} T_{j} \quad \mathscr{P}_{j}=\sum_{k}\left(M^{-1}\right)_{j k} T_{k}^{\dagger}
$$

4. Apply these projectors on Feynman diagrams repr of the scattering amplitude

TENSOR DECOMPOSITION: pros anv cons

Problems in d-dimensions

Powerful and very general method
Often used in CDR, can become intractable for complicated problems due to evanescent structures in $\mathrm{d}=4$

TENSOR DECOMPOSITION: pros and cons

Problems in d-dimensions

Powerful and very general method
Often used in CDR, can become intractable for complicated problems due to evanescent structures in $\mathrm{d}=4$

Typical case 4 quark scattering $q\left(p_{2}\right)+\bar{q}\left(p_{1}\right) \rightarrow Q\left(p_{3}\right)+\bar{Q}\left(p_{4}\right)$

$$
D_{i} \sim \bar{u}\left(p_{1}\right) \Gamma^{\mu_{1}, \ldots, \mu_{n}} u\left(p_{2}\right) \bar{u}\left(p_{3}\right) \Gamma_{\mu_{1}, \ldots, \mu_{n}} u\left(p_{4}\right)
$$

Infinite number of tensor structures in d dimensions

TENSOR DECOMPOSITION: pros and cons

Problems in d-dimensions

Powerful and very general method
Often used in CDR, can become intractable for complicated problems due to evanescent structures in $\mathrm{d}=4$

Typical case 4 quark scattering $q\left(p_{2}\right)+\bar{q}\left(p_{1}\right) \rightarrow Q\left(p_{3}\right)+\bar{Q}\left(p_{4}\right)$
$D_{i} \sim \bar{u}\left(p_{1}\right) \Gamma^{\mu_{1}, \ldots, \mu_{n}} u\left(p_{2}\right) \bar{u}\left(p_{3}\right) \Gamma_{\mu_{1}, \ldots, \mu_{n}} u\left(p_{4}\right)$
Infinite number of tensor structures in d dimensions

$$
\begin{aligned}
& \mathcal{D}_{1}=\bar{u}\left(p_{1}\right) \gamma_{\mu_{1}} u\left(p_{2}\right) \bar{u}\left(p_{3}\right) \gamma_{\mu_{1}} u\left(p_{4}\right), \\
& \mathcal{D}_{2}=\bar{u}\left(p_{1}\right) \not p_{3} u\left(p_{2}\right) \bar{u}\left(p_{3}\right) p_{1} u\left(p_{4}\right), \\
& \mathcal{D}_{3}=\bar{u}\left(p_{1}\right) \gamma_{\mu_{1}} \gamma_{\mu_{2}} \gamma_{\mu_{3}} u\left(p_{2}\right) \bar{u}\left(p_{3}\right) \gamma_{\mu_{1}} \gamma_{\mu_{2}} \gamma_{\mu_{3}} u\left(p_{4}\right), \\
& \mathcal{D}_{4}=\bar{u}\left(p_{1}\right) \gamma_{\mu_{1}} \not p_{3} \gamma_{\mu_{3}} u\left(p_{2}\right) \bar{u}\left(p_{3}\right) \gamma_{\mu_{1}} \not p_{1} \gamma_{\mu_{3}} u\left(p_{4}\right), \\
& \mathcal{D}_{5}=\bar{u}\left(p_{1}\right) \gamma_{\mu_{1}} \gamma_{\mu_{2}} \gamma_{\mu_{3}} \gamma_{\mu_{4}} \gamma_{\mu_{5}} u\left(p_{2}\right) \bar{u}\left(p_{3}\right) \gamma_{\mu_{1}} \gamma_{\mu_{2}} \gamma_{\mu_{3}} \gamma_{\mu_{4}} \gamma_{\mu_{5}} u\left(p_{4}\right), \\
& \mathcal{D}_{6}=\bar{u}\left(p_{1}\right) \gamma_{\mu_{1}} \gamma_{\mu_{2}} \not p_{3} \gamma_{\mu_{4}} \gamma_{\mu_{5}} u\left(p_{2}\right) \bar{u}\left(p_{3}\right) \gamma_{\mu_{1}} \gamma_{\mu_{2}} \not p_{1} \gamma_{\mu_{4}} \gamma_{\mu_{5}} u\left(p_{4}\right) .
\end{aligned}
$$

TENSOR DECOMPOSITION: upgrade in thv

Improvements in $d=4 \quad$ [Peraro, Tancredi '19,'20]
Only two of these structures are linearly independent if external states are in $d=4$

$$
\begin{aligned}
& q\left(p_{2}\right)+\bar{q}\left(p_{1}\right) \rightarrow Q\left(p_{3}\right)+\bar{Q}\left(p_{4}\right) \\
& \mathcal{D}_{1}=\bar{u}\left(p_{1}\right) \gamma_{\mu_{1}} u\left(p_{2}\right) \bar{u}\left(p_{3}\right) \gamma_{\mu_{1}} u\left(p_{4}\right) \\
& \mathcal{D}_{2}=\bar{u}\left(p_{1}\right) \not p_{3} u\left(p_{2}\right) \bar{u}\left(p_{3}\right) p_{1} u\left(p_{4}\right)
\end{aligned}
$$

They are enough to obtain full result in 't Hooft-Veltman scheme
They are also enough for the finite remainder in CDR!
Use to complete $p p \rightarrow p p @ 3$ loops [Caola, Chakraborty, Gambuti, Manteuffel, Tancredi '21,'22]

TENSOR DECOMPOSITION FOR CHIRAL THEORIES

Let's see how this works for chiral theories (new \& unpublished)
Consider the production of a Z-boson and a jet in quark-antiquark annihilation

$$
q\left(p_{1}\right)+\bar{q}\left(p_{2}\right) \rightarrow g\left(p_{3}\right)+Z\left(p_{4}\right)
$$

TENSOR DECOMPOSITION FOR CHIRAL THEORIES

Let's see how this works for chiral theories (new \& unpublished)
Consider the production of a Z-boson and a jet in quark-antiquark annihilation

$$
q\left(p_{1}\right)+\bar{q}\left(p_{2}\right) \rightarrow g\left(p_{3}\right)+Z\left(p_{4}\right)
$$

Status:
Pheno @ NNLO including only vector-like couplings of singlet type
Amplitudes [Garland, Gerhmann et al '02]
Pheno [Gehrmann-De Ridder et al '17, '18] etc etc

$\gamma^{\mu} \gamma^{5}$ - axial coupling neglected in singlet contributions -
Need to include top+bottom to get consistent result (anomaly!)

TENSOR DECOMPOSITION FOR CHIRAL THEORIES

One issue for axial couplings is evanescent structures in chiral tensor

TENSOR DECOMPOSITION FOR CHIRAL THEORIES

One issue for axial couplings is evanescent structures in chiral tensor

Our method: only independent tensors in $d=4$ are relevant, we can span it with a basis of vectors in $d=4: p_{1}^{\mu}, p_{2}^{\mu}, p_{3}^{\mu}$, plus the fourth parity-odd one

$$
\epsilon_{\nu \rho \sigma \mu} p_{1}^{\nu} p_{2}^{\rho} p_{3}^{\sigma}=\epsilon^{p_{1} p_{2} p_{3} \mu}=v_{A}^{\mu}
$$

With these, a possible basis can be written as: (could be further optimised for singlet contributions)

$$
\begin{aligned}
A_{A V}=\epsilon_{4, \mu} \epsilon_{3, \nu} & A_{A V}^{\mu, \nu} \\
=\epsilon_{4, \mu} \epsilon_{3, \nu} & {\left[\bar{u}\left(p_{2}\right) \not p_{3} u\left(p_{1}\right)\left(K_{1} p_{1}^{\mu} p_{1}^{\nu}+K_{2} p_{2}^{\mu} p_{1}^{\nu}+K_{3} g^{\mu \nu}+R_{1} p_{1}^{\mu} v_{A}^{\nu}+R_{2} p_{2}^{\mu} v_{A}^{\nu}+R_{3} v_{A}^{\mu} p_{1}^{\nu}\right)\right.} \\
& +\bar{u}\left(p_{2}\right) \gamma^{\nu} u\left(p_{1}\right)\left(K_{4} p_{1}^{\mu}+K_{5} p_{2}^{\mu}\right)+\bar{u}\left(p_{2}\right) \gamma^{\mu} u\left(p_{1}\right) K_{6} p_{1}^{\nu} \\
& \left.+\bar{u}\left(p_{2}\right) \psi_{A} u\left(p_{1}\right)\left(R_{4} p_{1}^{\mu} p_{1}^{\nu}+R_{5} p_{2}^{\mu} p_{1}^{\nu}\right)+R_{6}\left(\bar{u}\left(p_{2}\right) \gamma^{\mu} u\left(p_{1}\right) v_{A}^{\nu}+\bar{u}\left(p_{2}\right) \gamma^{\nu} u\left(p_{1}\right) v_{A}^{\mu}\right)\right]
\end{aligned}
$$

TENSOR DECOMPOSITION FOR CHIRAL THEORIES

$$
\begin{aligned}
A_{A V}= & \epsilon_{4, \mu} \epsilon_{3, \nu} A_{A V}^{\mu, \nu} \\
= & \epsilon_{4, \mu} \epsilon_{3, \nu}\left[\bar{u}\left(p_{2}\right) \not p_{3} u\left(p_{1}\right)\left(K_{1} p_{1}^{\mu} p_{1}^{\nu}+K_{2} p_{2}^{\mu} p_{1}^{\nu}+K_{3} g^{\mu \nu}+R_{1} p_{1}^{\mu} v_{A}^{\nu}+R_{2} p_{2}^{\mu} v_{A}^{\nu}+R_{3} v_{A}^{\mu} p_{1}^{\nu}\right)\right. \\
& +\bar{u}\left(p_{2}\right) \gamma^{\nu} u\left(p_{1}\right)\left(K_{4} p_{1}^{\mu}+K_{5} p_{2}^{\mu}\right)+\bar{u}\left(p_{2}\right) \gamma^{\mu} u\left(p_{1}\right) K_{6} p_{1}^{\nu} \\
& \left.+\bar{u}\left(p_{2}\right) \psi_{A} u\left(p_{1}\right)\left(R_{4} p_{1}^{\mu} p_{1}^{\nu}+R_{5} p_{2}^{\mu} p_{1}^{\nu}\right)+R_{6}\left(\bar{u}\left(p_{2}\right) \gamma^{\mu} u\left(p_{1}\right) v_{A}^{\nu}+\bar{u}\left(p_{2}\right) \gamma^{\nu} u\left(p_{1}\right) v_{A}^{\mu}\right)\right]
\end{aligned}
$$

The counting is straightforward:
> 2 helicities for the $q \bar{q}$ line (massless)
> 2 helicities for the (physical) gluon
> 3 helicities for the (physical) Z boson

Gives a total of $=12$ helicity amplitudes
matched by the number of tensors and form factors

Note that manipulations are done in tHV / Larin scheme

$$
p_{i} \cdot v_{A}=0, \quad v_{A} \cdot v_{A}=\epsilon^{p_{1} p_{2} p_{3} \mu} \epsilon^{p_{1} p_{2} p_{3} \mu}=\frac{d-3}{4} s_{12} s_{13} s_{23}
$$

[Gehrmann, Peraro, Tancredi to appear soon]

NATURAL SOLUTION FOR GAMMA5 IN LARIN'S SCHEME

$$
\begin{aligned}
A_{A V}= & \epsilon_{4, \mu} \epsilon_{3, \nu} A_{A V}^{\mu, \nu} \\
=\epsilon_{4, \mu} \epsilon_{3, \nu} & {\left[\bar{u}\left(p_{2}\right) \not p_{3} u\left(p_{1}\right)\left(K_{1} p_{1}^{\mu} p_{1}^{\nu}+K_{2} p_{2}^{\mu} p_{1}^{\nu}+K_{3} g^{\mu \nu}+R_{1} p_{1}^{\mu} v_{A}^{\nu}+R_{2} p_{2}^{\mu} v_{A}^{\nu}+R_{3} v_{A}^{\mu} p_{1}^{\nu}\right)\right.} \\
& +\bar{u}\left(p_{2}\right) \gamma^{\nu} u\left(p_{1}\right)\left(K_{4} p_{1}^{\mu}+K_{5} p_{2}^{\mu}\right)+\bar{u}\left(p_{2}\right) \gamma^{\mu} u\left(p_{1}\right) K_{6} p_{1}^{\nu} \\
& \left.+\bar{u}\left(p_{2}\right) \psi_{A} u\left(p_{1}\right)\left(R_{4} p_{1}^{\mu} p_{1}^{\nu}+R_{5} p_{2}^{\mu} p_{1}^{\nu}\right)+R_{6}\left(\bar{u}\left(p_{2}\right) \gamma^{\mu} u\left(p_{1}\right) v_{A}^{\nu}+\bar{u}\left(p_{2}\right) \gamma^{\nu} u\left(p_{1}\right) v_{A}^{\mu}\right)\right]
\end{aligned}
$$

[Gehrmann, Peraro, Tancredi to appear soon]
tensors and projectors contain *at most* one occurrence of $\epsilon_{\mu \nu \rho \sigma}$
γ_{5} never appears in the tensor decomposition!
very natural to be applied in Larin-Scheme

NATURAL SOLUTION FOR GAMMA5 IN LARIN'S SCHEME

Example: One-loop singlet form factors

At one loop there is only 1 form factor effectively

$$
\begin{aligned}
R_{1}= & -\frac{16 i}{(d-2) s t(t+u)^{2}}\left[\operatorname{Bub}(s)\left(\frac{1}{2}(d-2)(t+u)+s\right)-\operatorname{Bub}\left(m^{2}\right)(s+t+u)\right] \\
R_{2} & =\frac{16 i}{(d-2) s u(t+u)^{2}}\left[\operatorname{Bub}(s)\left(\frac{1}{2}(d-2)(t+u)+s\right)-\operatorname{Bub}\left(m^{2}\right)(s+t+u)\right] \\
R_{3} & =\frac{16 i}{(d-2) s t(t+u)^{2}}\left[\operatorname{Bub}(s)\left(\frac{1}{2}(d-2)(t+u)+s\right)-\operatorname{Bub}\left(m^{2}\right)(s+t+u)\right] \\
R_{4} & =\frac{16 i}{(d-2) s t(t+u)^{2}}\left[\operatorname{Bub}(s)\left(\frac{1}{2}(d-2)(t+u)+s\right)-\operatorname{Bub}\left(m^{2}\right)(s+t+u)\right] \\
R_{5} & =\frac{16 i}{(d-2) s t(t+u)^{2}}\left[\operatorname{Bub}(s)\left(\frac{1}{2}(d-2)(t+u)+s\right)-\operatorname{Bub}\left(m^{2}\right)(s+t+u)\right] \\
R_{6} & =0
\end{aligned}
$$

MASTER INTEGRALS: analitic complexriy

$$
=\sum_{i=1}^{N} R_{i}\left(x_{1}, \ldots, x_{r}\right) \mathscr{F}_{i}\left(x_{1}, \ldots, x_{n}\right)
$$

MASTER INTEGRALS: anautic complexrir

$$
=\sum_{i=1}^{N} R_{i}\left(x_{1}, \ldots, x_{r}\right) \mathscr{J}_{i}\left(x_{1}, \ldots, x_{n}\right)
$$

Scattering amplitude has (poles and) branch cuts - encoded in master integrals!

GEOMETRY AND FEYNMAN INTEGRALS

Iterated integrals on the Riemann Sphere ~ multiple polylogarithms

$$
G\left(c_{1}, \ldots, c_{k} ; x\right)=\int_{0}^{x} d t r\left(c_{1}, t\right) G\left(c_{2}, \ldots, c_{k} ; t\right)
$$

GEOMETRY AND FEYNMAN INTEGRALS

Iterated integrals on the Riemann Sphere \sim multiple polylogarithms

$$
G\left(c_{1}, \ldots, c_{k} ; x\right)=\int_{0}^{x} d t r\left(c_{1}, t\right) G\left(c_{2}, \ldots, c_{k} ; t\right)
$$

\longrightarrow the famous g-2 calculation, by now known to 5 loops numerically

$C_{2}=$

$C_{3}=$

$$
=+1.181241456 \ldots
$$

GEOMETRY AND FEYNMAN INTEGRALS

Iterated integrals on the Riemann Sphere \sim multiple polylogarithms

$$
G\left(c_{1}, \ldots, c_{k} ; x\right)=\int_{0}^{x} d t r\left(c_{1}, t\right) G\left(c_{2}, \ldots, c_{k} ; t\right)
$$

\longrightarrow the famous g-2 calculation, by now known to 5 loops numerically

$C_{1}=$ Amin
$C_{2}=$

$$
=\frac{197}{144}+\frac{1}{12} \pi^{2}-\frac{1}{2} \pi^{2} \ln 2+\frac{3}{4} \zeta(3) \quad[\text { Petermann, Sommerfield ' } 57]
$$

$C_{3}=$

$$
=\frac{1}{2} \quad[\text { Schwinger '48 }]
$$

$$
=\frac{83}{72} \pi^{2} \zeta(3)-\frac{215}{24} \zeta(5)+\frac{100}{3}\left[\left(\operatorname{Li}_{4}\left(\frac{1}{2}\right)+\frac{\ln ^{4} 2}{24}\right)-\frac{\pi^{2} \ln ^{2} 2}{24}\right]
$$

$$
-\frac{239}{2160} \pi^{4}+\frac{139}{18} \zeta(3)-\frac{298}{9} \pi^{2} \ln 2+\frac{17101}{810} \pi^{2}+\frac{28259}{5184}
$$

GEOMETRY AND FEYNMAN INTEGRALS

Iterated integrals on the Riemann Sphere \sim multiple polylogarithms

$$
G\left(c_{1}, \ldots, c_{k} ; x\right)=\int_{0}^{x} d t r\left(c_{1}, t\right) G\left(c_{2}, \ldots, c_{k} ; t\right)
$$

\longrightarrow the famous g-2 calculation, by now known to 5 loops nymerically

$C_{1}=$

$C_{2}=$

$C_{3}=$

[Kinoshita et al]

$$
=\frac{1}{2} \quad[\text { Schwinger ' } 4 \delta]
$$

$$
\begin{aligned}
& =\frac{197}{144}+\frac{1}{12} \pi^{2}-\frac{1}{2} r^{2} \ln 2+\frac{3}{4} \zeta(3) \quad \text { [Petermann, Sommerfield '57] } \\
& =\frac{83}{72} \pi^{2} \zeta(3)-\frac{215}{24} \zeta(5)+\frac{100}{3}\left[\left(\operatorname{Li}_{4}\left(\frac{1}{2}\right)+\frac{\ln ^{4} 2}{24}\right)-\frac{\pi^{2} \ln ^{2} 2}{24}\right]
\end{aligned}
$$

$$
-\frac{239}{2160} \pi^{4}+\frac{139}{18} \zeta(3)-\frac{298}{9} \pi^{2} \ln 2+\frac{17101}{810} \pi^{2}+\frac{28259}{5184}
$$

BEYOND GENUS 0

Riemann sphere too simple, Feynman integrals involve more interesting geometries
First non-trivial case with famous sunrise graph received a lot of attention in past decade

The sunrise integral

$$
=\frac{1}{\sqrt{(3 m-\sqrt{s})(\sqrt{s}+m)^{3}}} \mathrm{~K}\left(\frac{16 m^{3} \sqrt{s}}{(3 m-\sqrt{s})(\sqrt{s}+m)^{3}}\right)
$$

BEYOND GENUS O

Riemann sphere too simple, Feynman integrals involve more interesting geometries
First non-trivial case with famous sunrise graph received a lot of attention in past decade

The sunrise integral

$$
=\frac{1}{\sqrt{(3 m-\sqrt{s})(\sqrt{s}+m)^{3}}} \mathrm{~K}\left(\frac{16 m^{3} \sqrt{s}}{(3 m-\sqrt{s})(\sqrt{s}+m)^{3}}\right)
$$

One dimensional surfaces of genus $1 \longrightarrow$ elliptic curves

$$
\mathcal{E}_{4}\left(\begin{array}{ccc}
n_{1} & \ldots & n_{k} \\
c_{1} & \ldots & c_{k}
\end{array} ; x, \vec{a}\right)=\int_{0}^{x} d t \Psi_{n_{1}}\left(c_{1}, t, \vec{a}\right) \mathcal{E}_{4}\left(\begin{array}{ccc}
n_{2} & \ldots & n_{k} \\
c_{2} & \ldots & c_{k}
\end{array} ; t, \vec{a}\right)
$$

[Brown, Levin '11; Adams, Weinzierl '13,'15; Broedel, Duhr, Dulat, Penante, Tancredi '17,'18,'19; Broedel, Mafra, Matthes, Schlotterer '15,'16]

HIGHER GENERA AND HIGHER DIMENSIONS

Even genus 1 is not enough, even at two loops...

Examples of Higher genera

HIGHER GENERA AND HIGHER DIMENSIONS

Even genus 1 is not enough, even at two loops...

Examples of Higher genera

Genus 3
[Georgoudis, Zhang '15]

Examples known up to genus 13

[Huang, Zhang '13]

HIGHER GENERA AND HIGHER DIMENSIONS

Even genus 1 is not enough, even at two loops...

Examples of Higher genera

Examples known up to genus 13

[Huang, Zhang '13]

HIGHER GENERA AND HIGHER DIMENSIONS

It is somewhat simpler to generate higher dimensional objects
A Calabi-Yau surface can be thought as an elliptic curve in more dimensions

HIGHER GENERA AND HIGHER DIMENSIONS

It is somewhat simpler to generate higher dimensional objects
A Calabi-Yau surface can be thought as an elliptic curve in more dimensions

1-loop "banana graphs" generate ($1-1$)-fold CYs

[Primo, Tancredi '17], [Brödel, Duhr, Dulat, Marzucca, Penante, Tancredi '19][Bönisch, Duhr, Fischbach, Klemm, Nega '21]
[Pögel, Wang, Weinzierl '22] MANY OTHERS...

HIGHER GENERA AND HIGHER DIMENSIONS

1-loop "banana graphs" generate (1-1)-fold CYs
[Bönisch, Duhr, Fischbach, Klemm, Nega '21]

$$
\mathrm{d} \underline{J}_{r}(\underline{z} ; \epsilon)=\mathbf{B}_{r}(\underline{z} ; \epsilon) \underline{J}_{r}(\underline{z} ; \epsilon)+\underline{N}_{r}(\underline{z} ; \epsilon)
$$

Solution obtained integrating N_{r} over the inverse Wronskian
The "Wronskian"

$$
\begin{gathered}
\mathbf{W}_{l}(z):=\left(\begin{array}{cccc}
\varpi_{l, 0}(z) & \varpi_{l, 1}(z) & \ldots & \varpi_{l, l-1}(z) \\
\partial_{z} \varpi_{l, 0}(z) & \partial_{z} \varpi_{l, 1}(z) & \ldots & \partial_{z} \varpi_{l, l-1}(z) \\
\vdots & \vdots & & \vdots \\
\partial_{z}^{l-1} \varpi_{l, 0}(z) & \partial_{z}^{l-1} \varpi_{l, 1}(z) & \ldots & \partial_{z}^{l-1} \varpi_{l, l-1}(z)
\end{array}\right) \\
\mathrm{d} \mathbf{W}_{r}(\underline{z})=\mathbf{B}_{0, r}(\underline{z}) \mathbf{W}_{r}(\underline{z})
\end{gathered}
$$

HIGHER GENERA AND HIGHER DIMENSIONS

1-loop "banana graphs" generate (1-1)-fold CYs
[Bönisch, Duhr, Fischbach, Klemm, Nega '21]

$$
\mathrm{d} \underline{J}_{r}(\underline{z} ; \epsilon)=\mathbf{B}_{r}(\underline{z} ; \epsilon) \underline{J}_{r}(\underline{z} ; \epsilon)+\underline{N}_{r}(\underline{z} ; \epsilon)
$$

Solution obtained integrating N_{r} over the inverse Wronskian

> "Periods" of the CY

Independent "ways" how you can move along the surface

$$
\mathrm{d} \mathbf{W}_{r}(\underline{z})=\mathbf{B}_{0, r}(\underline{z}) \mathbf{W}_{r}(\underline{z})
$$

HIGHER GENERA AND HIGHER DIMENSIONS

A curious generalisation The Ice (cream) cone graphs

[Duhr, Klemm, Nega, Tancredi, to appear soon]

HIGHER GENERA AND HIGHER DIMENSIONS

A curious generalisation The Ice (cream) cone graphs

[Duhr, Klemm, Nega, Tancredi, to appear soon]

We can prove that @ 1 loops its finite part contains two equivalent copies of the banana graph and nothing else

21-1 master integrals $=2(1-1)+1$
$\operatorname{Cut}\left[I_{1, \ldots, 1 ; 0,0}(s ; 2)\right] \propto \oint_{\mathcal{C}} \frac{d z_{3}}{\left(z_{3}+m^{2} x\right)\left(z_{3}+\frac{m^{2}}{x}\right)} \operatorname{Cut}\left[\operatorname{Ban}^{(l-1)}\left(z_{3}\right)\right]$
based on [Primo, Tancredi '16,'17]
Two residues in $\mathrm{d}=2 \rightarrow$ two copies of the Banana graph evaluates at different points $s=m^{2} \frac{(1+x)^{2}}{x}$

HIGHER GENERA AND HIGHER DIMENSIONS

The Ice (cream) cone graphs @ 3 loops = 5 MIs

Relevant, for example, for 3 loop $g g \rightarrow H$ with massive quarks

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} x} \underline{I}^{(3)}= \\
& \left(\begin{array}{cccccccc}
\\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{2}{(1-x)(1+x)} & 0 & \frac{1+x^{2}}{x(1-x)(1+x)} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & \frac{3(1-x)}{x^{2}(1+9 x)} & -\frac{1+3 x}{x^{2}(1+x)(1+9 x)} & \frac{(1-3 x)(1+3 x)}{x(1+x)(1+9 x)} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & -\frac{3(1-x)}{x^{2}(9+x)} & 0 & 0 & -\frac{3+x}{x(1+x)(9+x)} & -\frac{9+20 x+3 x^{2}}{x(1+x)(9+x)} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \underline{I}^{(3)}
\end{aligned}
$$

Last integral not independent in $d=2$, can be chosen to be zero, it decouples

HIGHER GENERA AND HIGHER DIMENSIONS

The Ice (cream) cone graphs @ 3 loops = 5 MIs

Relevant, for example, for 3 loop $g g \rightarrow H$ with massive quarks

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} x} \underline{I}^{(3)}= \\
& \left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{2}{(1-x)(1+x)} & 0 & \frac{1+x^{2}}{x(1-x)(1+x)} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & \frac{3(1-x)}{x^{2}(1+9 x)} & -\frac{1+3 x}{x^{2}(1+x)(1+9 x)} & \frac{(1-3 x)(1+3 x)}{x(1+x)(1+9 x)} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & -\frac{3(1-x)}{x^{2}(9+x)} & 0 & 0 & -\frac{3+x}{x(1+x)(9+x)}-\frac{9+20 x+3 x^{2}}{x(1+x)(9+x)} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Last integral not independent in $\mathrm{d}=2$, can be chosen to be zero, it decouples [Remiddi, Tancredi '13]

CONCLUSIONS

A lot has been happening in multi-loop calculations
A LOT of beautiful results are (almost continuously) being released: $2 \rightarrow 3$ massless and now massive, recent first studies for massless $2 \rightarrow 4$, etc etc

CONCLUSIONS

A lot has been happening in multi-loop calculations
A LOT of beautiful results are (almost continuously) being released: $2 \rightarrow 3$ massless and now massive, recent first studies for massless $2 \rightarrow 4$, etc etc

I am truly sorry I did not review any of it :-)

CONCLUSIONS

A lot has been happening in multi-loop calculations
A LOT of beautiful results are (almost continuously) being released: $2 \rightarrow 3$ massless and now massive, recent first studies for massless $2 \rightarrow 4$, etc etc

I am truly sorry I did not review any of it :-)

I tried to show two developments I am involved with, to give a glimpse of some of the structures that appear in high precision calculations for the LCH

With a message for (mainly) young people: LHC physics requires messy calculations, we cannot avoid that, but there is a lot of "beauty" in pQFT, and it is a lot of fun to be looking for it, while "crunching numbers for cross sections"

THANK YOU VERY MUCH!

