

Ringberg, October 2022

Resummation in MCFM

Fiducial qT resummation of color-singlet processes at N3LL+NNLO, CuTe-MCFM 2009.11437, Becher and Neumann Transverse momentum resummation at N3LL+NNLO for diboson processes,Campbell, RKE, Neumann and Seth, $\underline{2210.10724}$ Results on Jet Veto in Colour singlet production, Campbell et al, in preparation)

MCFM

* MCFM contains about 350 processes at hadron-colliders evaluated at NLO.
* Since matrix elements are calculated using analytic formulae, one can expect better performance, in terms of stability and computer speed, than fully numerical codes.
* In addition MCFM contains several process evaluated at NNLO using both the jetti-ness and the q_{T} slicing schemes.
* NNLO results for $p p \rightarrow X$, require process $p p \rightarrow X+1$ parton at NLO, and two loop matrix elements for $p p \rightarrow X$
* Recent(ish) additions to virtual matrix elements
* H+4 partons with full mass effects at one-loop (2002.04018)
* Vector boson pair production at one loop: simplified analytic results for the process $q \bar{q} \ell \bar{\ell} \ell^{\prime} \bar{\ell}^{\prime} g(\underline{2203.17170})$ (work with Giuseppe de Laurentis)

NNLO results

- In a recent paper (2202.07738) we tried to document all the processes calculated at NNLO.
* About 50\% are available in MCFM.
* We use both q_{T} slicing and jetti-ness slicing.
* However I should note that in some cases $\mathrm{N}^{3} \mathrm{LO}$ is now the start of the art (e.g. $1811.07906,2102.07607$ $\underline{2203.01565, ~ 2209.06138)}$

Process	MCFM	Process	MCFM
$H+0$ jet [8-14]	$\checkmark ~[15]$	$W^{ \pm}+0$ jet [16-18]	$\checkmark[15]$
$Z / \gamma^{*}+0$ jet [11, 17-19]	$\checkmark[15]$	$Z H[20]$	$\checkmark[21]$
$W^{ \pm} \gamma[18,22,23]$	$\checkmark[24]$	$Z \gamma[18,25]$	$\checkmark[25]$
$\gamma \gamma[18,26-28]$	$\checkmark[29]$	single top [30]	$\checkmark[31]$
$W^{ \pm} H[32,33]$	$\checkmark[21]$	$W Z[34,35]$	\checkmark
$Z Z[1,18,36-40]$	\checkmark	$W^{+} W^{-}[18,41-44]$	\checkmark
$W^{ \pm}+1$ jet [45, 46]	$[3]$	$Z+1$ jet [47, 48]	$[4]$
$\gamma+1$ jet [49]	$[5]$	$H+1$ jet [50-55]	$[6]$
$t \bar{t}[56-61]$		$Z+b[62]$	
$W^{ \pm} H+$ jet [63]		$Z H+$ jet $[64]$	
Higgs WBF [65, 66]		$H \rightarrow b \bar{b}[67-69]$	
top decay [31, 70, 71]		dijets [72-74]	
$\gamma \gamma+$ jet [75]		$W^{ \pm} c[76]$	
$b \bar{b}[77]$	$\gamma \gamma \gamma[78]$		
HH [79]		HHH [80]	

Examples of NNLO results from MCFM

Process		target		MCFM		
	$\sigma_{N L O}$	$\sigma_{N N L O}$	$\delta_{N N L O}$	$\sigma_{N N L O}$	$\delta_{N N L O}$	
$p p \rightarrow H$	$29.78(0)$	$39.93(3)$	$10.15(3)$	$39.91(5)$	$10.13(5)$	nb
$p p \rightarrow Z$	$56.41(0)$	$55.99(3)$	$-0.42(3)$	$56.03(3)$	$-0.38(3)$	nb
$p p \rightarrow W^{-}$	$79.09(0)$	$78.33(8)$	$-0.76(8)$	$78.41(6)$	$-0.68(6)$	nb
$p p \rightarrow W^{+}$	$106.2(0)$	$105.8(1)$	$-0.4(1)$	$105.8(1)$	$-0.4(1)$	nb
$p p \rightarrow \gamma \gamma$	$25.61(0)$	$40.28(30)$	$14.67(30)$	$40.19(20)$	$14.58(20)$	pb
$p p \rightarrow e^{-} e^{+} \gamma$	$2194(0)$	$2316(5)$	$122(5)$	$2315(5)$	$121(5)$	pb
$p p \rightarrow e^{-} \overline{\nu_{e} \gamma}$	$1902(0)$	$2256(15)$	$354(15)$	$2251(2)$	$349(2)$	pb
$p p \rightarrow e^{+} \nu_{e} \gamma$	$2242(0)$	$2671(35)$	$429(35)$	$2675(2)$	$433(2)$	pb
$p p \rightarrow e^{-} \mu^{-} e^{+} \mu^{+}$	$17.29(0)$	$20.30(1)$	$3.01(1)$	$20.30(2)$	$3.01(2)$	fb
$p p \rightarrow e^{-} \mu^{+} \nu_{\mu} \overline{\nu_{e}}$	$243.7(1)$	$264.6(2)$	$20.9(3)$	$264.9(9)$	$21.2(8)$	fb
$p p \rightarrow e^{-} \mu^{-} e^{+} \overline{\nu_{\mu}}$	$23.94(1)$	$26.17(2)$	$2.23(3)$	$26.18(3)$	$2.24(2)$	fb
$p p \rightarrow e^{-} e^{+} \mu^{+} \nu_{\mu}$	$34.62(1)$	$37.74(4)$	$3.12(5)$	$37.78(4)$	$3.16(3)$	fb
$p p \rightarrow Z H$	$780.0(4)$	$846.7(5)$	$66.7(6)$	$847.3(7)$	$67.3(6)$	fb
$p p \rightarrow W^{ \pm} H$	$1446.5(7)$	$1476.1(7)$	$29.6(10)$	$1476.7(8)$	$30.2(4)$	fb

Table 4. NLO results, computed using MCFM with NNLO PDFs (denoted $\sigma_{N L O}{ }^{*}$), total NNLO cross sections from vhonnlo ($W^{ \pm} H$ and $Z H$ only) and MATRIX (remaining processes, using the extrapolated result from Table 6 of Ref. [24]) and the target NNLO coefficients ($\delta_{N N L O}$, with $\delta_{N N L O}=\sigma_{N N L O}-\sigma_{N L O}$). The result of the MCFM calculation (0 -jettiness, fit result b_{0} from Eq. (3.9)) is shown in the final column.

Comparative study of jettiness and q_{T} slicing

* Leading log behavior of a color singlet cross section

$$
\Sigma_{T}=\sigma_{0} \exp \left[-\frac{\alpha_{s} C_{F}}{2 \pi} \ln ^{2}\left(\left(q_{T}^{\text {cut }}\right)^{2} / Q^{2}\right)\right]
$$ integrated up to a small cutoff value

$$
=\sigma_{0} \exp \left[-\frac{2 \alpha_{s} C_{F}}{\pi} \ln ^{2}\left(q_{T}^{\text {cut }} / Q\right)\right]
$$

* Corresponding LL formula for zero-jettiness

$$
\Sigma_{\tau}=\sigma_{0} \exp \left[-\frac{\alpha_{s} C_{F}}{\pi} \ln ^{2} \frac{\tau^{c u t}}{Q}\right]
$$

* Similar size for the above cut region

$$
\frac{\tau^{\mathrm{cut}}}{Q} \simeq\left(\frac{q_{T}^{\mathrm{cut}}}{Q}\right)^{\sqrt{2}}
$$

For $q_{T}: \quad \epsilon_{T}=q_{T}^{\text {cut }} / Q$
For jettiness: $\epsilon_{\tau}=\left(\tau^{\mathrm{cut}} / Q\right)^{\frac{1}{\sqrt{2}}}$

Comparison of NNLO slicing methods

* The jettiness method divides phase space on basis of jettiness;
* q_{T} slicing method appears to have smaller power corrections in most cases for equal computational burden, but not for all (viz. $W \gamma, Z \gamma, \gamma \gamma$);
* However jettiness has the proven ability to deal with W+jet (1504.02131), Z+jet (1512.01291), Higgs+jet, (1906.01020).

$$
\epsilon_{T}=q_{T} / Q, \quad \epsilon_{\tau}=\left(\tau_{\mathrm{cut}} / Q\right)^{1 / \sqrt{2}}
$$

Open square shows the MATRIX result $\underline{1711.06631}$ for $\epsilon_{T}=0.15 \%$

Jetti-ness appears to be comparable or slightly better for processes involving photons.

Transverse momentum resummation at $\mathrm{N}^{3} \mathrm{LL}+\mathrm{NNLO}$ for color singlet processes

All orders result for q_{T} distribution

* At small q_{T} we must sum large logarithms.
* Procedure for color singlet final states based on Collins, Sterman and Soper (1984)

$$
\begin{aligned}
\frac{d \sigma}{d Q^{2} d y d q_{T}^{2}} & =\frac{4 \pi \alpha^{2}}{9 Q^{2} S} \int d^{2} b \exp \left(i q_{T} \cdot b\right) \sum_{j} e_{j}^{2} \\
& \times \sum_{a} \int_{x_{a}}^{1} \frac{d \xi_{A}}{\xi_{A}} f_{a / A}\left(\xi_{a} ; 1 / b\right) \frac{d \xi_{B}}{\xi_{B}} f_{b / B}\left(\xi_{b} ; 1 / b\right) \\
& \times \exp \left\{-\int_{1 / b^{2}}^{Q^{2}} \frac{d \bar{\mu}^{2}}{\bar{\mu}^{2}}\left[\ln \frac{Q^{2}}{\bar{\mu}} A\left(\alpha_{S}(\bar{\mu})+B\left(\alpha_{S}(\bar{\mu})\right]\right\}\right.\right. \\
& +\frac{4 \pi^{2} \alpha^{2}}{9 Q^{2} S} Y\left(q_{T} ; Q, x_{a}, x_{b}\right)
\end{aligned}
$$

$$
A\left(\alpha_{S}(\mu)=\sum_{n=0}^{\infty} A^{(n)}\left(\frac{\alpha_{S}}{2 \pi}\right)^{n}, \quad A^{(1)}=C_{F}, A^{(2)}=2 C_{F}\left\{C_{A}\left(\frac{67}{18}-\frac{\pi^{2}}{6}\right)-\frac{10 T_{F} n_{f}}{9}\right\}\right.
$$

$$
B\left(\alpha_{s}(\mu)\right)==\sum_{n=0}^{\infty} B^{(n)}\left(\frac{\alpha_{S}}{2 \pi}\right)^{n}, \quad B^{(1)}=-3 C_{F}
$$

$$
B^{(2)}=C_{F}\left[C_{F}\left(\pi^{2}-\frac{3}{4}-12 \zeta_{3}\right)+C_{A}\left(\frac{11 \pi^{2}}{9}-\frac{193}{12}+6 \zeta_{3}\right)+T_{R} n_{f}\left(\frac{17}{3}-\frac{4 \pi^{2}}{9}\right)\right]
$$

To "b" or not to "b"

$\frac{d \sigma}{d Q^{2} d y d q_{T}^{2}}=\frac{4 \pi \alpha^{2}}{9 Q^{2} S} \int d^{2} b e^{i q_{T} \cdot b} \sum_{j} e_{j}^{2} \sum_{a} \int_{x_{a}}^{1} \frac{d \xi_{A}}{\xi_{A}} f_{a / A}\left(\xi_{a} ; 1 / b\right) \frac{d \xi_{B}}{\xi_{B}} f_{b / B}\left(\xi_{b} ; 1 / b\right)$

* b-space, (Fourier conjugate to q_{T})

$$
\times \exp \left\{-\int_{1 / b^{2}}^{Q^{2}} \frac{d \bar{\mu}^{2}}{\bar{\mu}^{2}}\left[\ln \frac{Q^{2}}{\bar{\mu}} A\left(\alpha_{S}(\bar{\mu})+B\left(\alpha_{S}(\bar{\mu})\right]\right\}\right.\right.
$$

* Advantages
* Elegant inclusion of transverse momentum conservation.
. Perturbative predictions for intercept $d \sigma /\left.d q_{T}^{2}\right|_{q_{T}=0}$

* Disadvantages

* b-integral extends to infinity; integrate over Landau pole in the coupling.

Handled by $b \rightarrow b_{*}=\frac{b}{\sqrt{1+\left(b / b_{\text {lim }}\right)^{2}}}$ so $b_{*}<b_{\text {lim }}$; however this substitution
changes prediction even at large q_{T} where fixed order perturbation theory should work.
*Difficulties with matching onto fixed order perturbation theory.

Small q_{T} in SCET language

$$
\begin{aligned}
& \frac{d^{2} \sigma}{d q_{T}^{2} d y}=\sigma_{0}\left|C_{V}\left(M_{Z}^{2}, \mu^{2}\right)\right|^{2} \sum_{i=q, g} \sum_{j=\bar{q}, g} \int_{\xi_{1}}^{1} \frac{d z_{1}}{z_{1}} \int_{\xi_{2}}^{1} \frac{d z_{2}}{z_{2}}\left[C_{q \bar{q}}\left(z_{1}, z_{1}, q_{T}^{2}, M_{Z}^{2}, \mu\right) \phi_{i N N_{1}}\left(\xi_{1} / z_{1}, \mu\right) \phi_{j N_{2}}\left(\xi_{2} / z_{2}, \mu\right)\right] \\
& C_{q \bar{q}}\left(z_{1}, z_{1}, q_{T}^{2}, M_{Z}^{2}, \mu\right)=\frac{1}{4 \pi} \int d^{2} x_{\perp} e^{-i q_{1} \cdot x_{\perp}}\left(\frac{x_{T}^{2} M_{Z}^{2}}{b_{0}^{2}}\right)^{F_{q \bar{q}}} e^{2 h_{F}\left(L_{\perp}, a_{s}\right)} \bar{I}\left(z_{1}, L_{\perp}, a_{s}\right) \bar{I}\left(z_{2}, L_{\perp}, a_{s}\right) \\
& =\frac{1}{2} \int_{0}^{\infty} d x_{T} x_{T} J_{0}\left(x_{T} q_{T}\right) \exp \left(g_{F}\left(M_{\Sigma}^{2}, \mu, L_{\perp}, a_{S}\right)\right) \quad L_{\perp}=\ln \frac{x_{T}^{2} \mu^{2}}{b_{0}^{2}}, x_{T}^{2}=-x_{\perp}^{2} \\
& g_{F}=-\eta L_{\perp}-a_{s}\left[\left(\Gamma_{0}+\eta \beta_{0}\right) \frac{L_{\perp}^{2}}{2}+O\left(L_{\perp}\right)\right] \quad \eta=C_{F} \frac{\alpha_{s}}{\pi} \ln \frac{M_{Z}^{2}}{\mu^{2}} \\
& \frac{1}{2} \int_{0}^{\infty} d x_{T} x_{T} J_{0}\left(x_{T} q_{T}\right) e^{-\eta L_{\perp}}=\frac{1}{q_{T}^{2}}\left(\frac{q_{T}^{2}}{\mu^{2}}\right)^{\eta} \frac{\Gamma(1-\eta)}{\Gamma(\eta)}\left(\frac{b_{0}}{2}\right)^{2 \eta} \longleftarrow
\end{aligned}
$$

Collinear Anomaly

* In SCET the beam functions and the soft function have light-cone divergences which are not regulated by dimensional regularization;
* These are not soft divergences; they are due to gluons at large rapidity;
* This requires an additional regulator, which can be removed at the end of the calculation;
* However a vestige of this regulator remains. The product of the two beam functions depends on the large scale of the problem, Q;
* This has been called the "collinear factorization anomaly" of SCET. Quantum effects modify a classical symmetry, $p \rightarrow \lambda p, \bar{p}=\bar{\lambda} \bar{p}$ with only $\lambda \bar{\lambda}=1$ unbroken.

Matching to fixed order

$$
\left.\frac{d \sigma^{\mathrm{N}^{3} \mathrm{LL}}}{d q_{T}}\right|_{\text {naively matched to NNLO }}=\frac{d \sigma^{\mathrm{N}^{3} \mathrm{LL}}}{d q_{T}}+\Delta \sigma, \text { where } \Delta \sigma=\left[\frac{d \sigma^{\mathrm{NNLO}}}{d q_{T}}-\frac{d \sigma^{\mathrm{N}^{3} \mathrm{LL}}}{d q_{T}}\right]_{\text {expanded to NNLO }}
$$

* Fixed order result recovered up to higher order terms, (which can induce unphysical behavior).
- Also problems at small q_{T}, introduce cutoff q_{0};

* So we need to implement
 case-by-case basis.

Error estimate

* We estimate the perturbative truncation uncertainty by varying the renormalization, factorization and resummation scales by the multipliers

$$
\left(k_{F} ; k_{R}\right) \in\{(2,2),(0.5,0.5),(2,1),(1,1),(0.5,1),(1,2),(1,0.5)\}
$$

* For fixed order we use $\mu_{F}=k_{F} \hat{Q}, \mu_{R}=k_{R} \hat{Q}$
* $q^{*}=Q^{2} \exp \left(-\pi / C_{i} / \alpha_{s}\left(q^{*}\right)\right)$ is characteristic scale at small q_{T}
* To set the resummation scale, we first calculate q^{*} for every event and then set $\mu=\max \left\{k_{F} \times q_{T}+q^{*} \exp \left(-q_{T} / q^{*}\right), 2 \mathrm{GeV}\right\}$ so that for small q_{T}, μ approaches q^{*} and it remains in the perturbative region.

Vector boson pair production at small q_{T}

* Resummation effects are potentially more important for vector boson pair production at the same q_{T} since Q is larger.
* Resummation at N3 LL+NNLO becomes important below ~ $50-100 \mathrm{GeV}$.

Transverse momentum distribution of the ZZ pair at NNLO and NNNLL+NNLO using CMS cuts at $\sqrt{s}=13.6 \mathrm{TeV}$

Comparison with CMS data at 13 TeV

- We simplify the analysis, by applying the same cuts to both electrons and muons.
* We neglect identical particle effects.
* Resummation improves description below $q_{T} \sim 75 \mathrm{GeV}$.
* More data will allow finer binning, so the resummation effects will be ever more necessary.

CMS results on lepton q_{T} in ZZ

* CMS also present results on the lepton q_{T}^{l} (summed over all leptons). Here the effect of resummation is minimal
* However the $q_{T}^{l, 1}$ of the leading lepton shows an effect.

ATLAS data ZZ

* The ATLAS collaboration (2103.01918) performed measurements of the $m_{4 l}$ distribution in five slices of $q_{T}^{4 l}$
- Expectation is that resummation should improve agreement with the data, as $m_{4 l}$ increases.

Truth WW cross section

* Here we show the truth $q_{T}(W W)$ cross section.
* Much more important for WW is the $p_{T}^{\text {veto }}$ cross section to reduce background from $t \bar{t}$

Jet veto cross sections

Jet veto cross section

* Jets defined using sequential recombination jet algorithms, ($\mathrm{n}=1$ (anti- k_{T}), $\mathrm{n}=0$ (Cambridge-Aachen) $\mathrm{n}=-1\left(k_{T}\right)$;
* Jet vetos also generate large logarithms, as codified in factorization formula; however logarithms are smaller if $p_{T}^{\text {veto }} \sim 25 \mathrm{GeV}$;
- Beam and Soft functions for leading jet p_{T} recently calculated at two-loop order using an exponential regulator by Abreu et al.
- Jet veto cross sections are simpler than the p_{T} resummed calculation (No b space).

$$
d_{i j}=\min \left(p_{T i}^{n}, p_{T j}^{n}\right) \frac{\sqrt{\Delta y_{i j}^{2}+\Delta \phi_{i j}^{2}}}{R}, \quad d_{i B}=p_{T i}^{n}
$$

$$
[\underbrace{\frac{d^{2} \sigma\left(p_{T}^{\text {veto }}\right)}{d M^{2} d y}=\sigma_{0}\left|C_{V}\left(-M^{2}, \mu\right)\right|^{2}}_{\text {Beam functions }} \begin{array}{c}
\text { Rapidity } \\
\text { regulator } \nu
\end{array}]
$$

$$
\xi_{1,2}=(M / \sqrt{s}) e^{ \pm y} \quad \sigma_{0}=\frac{4 \pi \alpha^{2}}{3 N_{c} M^{2} s}
$$

Comments on Abreu et al

* Important step in making SCET results for almost complete $\mathrm{N}^{3} \mathrm{LL}$ available to consumers, (such as us in MCFM).
* Unfortunately, in the ancillary materials for 2207.07037, the file BeamFunctionQQCACF.m contained a parameter R0, which should have been set to zero. (Thanks to Pier Monni for discussions - arXiv result will be updated after article is accepted for publication).
* Jets vetoed over all rapidity

The analytic two-loop soft function for leading-jet p_{T}
\qquad Soft function

Samuel Abreu, ${ }^{a, b}$ Jonathan R. Gaunt, ${ }^{e}$ Pier Francesco Monni, ${ }^{a}$ Robert Szafron ${ }^{d}$ "CERN, Theoretical Physics Department, CH-1211 Geneva 2s, Switzerland
${ }^{\text {b }}$ Higgs Centre for Theoretical Physics, School of Physics and Astronomg, The University of burgh, Edinburgh EH9 sFD, Scotland, United Kingdom
${ }^{\text {EDepartment of Physics and Astronomy, University of Manchester, Manchester M1s 9PL, United }}$ Kingdom
${ }^{\text {d}}$ Department of Physics, Brookhaven National Laboratory, Upton, N.Y., 1197s, U.S.A.
E-mail: aanuel.abreuecern.ch, jonathan.gauntonanchester.ac.uk, p1er.monn1बcern.ch, razafronबbnl.gov

Prepared for submission to JHEP
CERN-TH-2022-118, ZU-TH 30/22

Quark and gluon two-loop beam functions for leading-jet p_{T} and slicing at NNLO

Beam functions
Abreu et al, 2207.07037

[^0]
Jet veto cross sections in a limited rapidity range

* Formula so far are valid for jet cross sections which are vetoed for all values of rapidity $\eta_{\text {cut }}$
* Experimental analyses perform jet cuts for $\eta<\eta_{\text {cut }}$
* In 1810.12911, three theoretical regions are identified
- $\eta_{\text {cut }} \gg \ln \left(Q / p_{T}^{\text {veto }}\right)$ (standard jet veto resummation)
- $\eta_{\text {cut }} \sim \ln \left(Q / p_{T}^{\text {veto }}\right)\left(\eta_{\text {cut }}\right.$-dependent beam functions)
* $\eta_{\text {cut }} \ll \ln \left(Q / p_{T}^{\text {veto }}\right)$ (collinear nonglobal logs)

Strategy: determination where resummation is potentially important, before considering limited rapidity range resummation

Refactorize à la Becher-Neubert

$$
\left[\mathscr{B}_{c}\left(\xi_{1}, Q, p_{T}^{\text {veto }}, R^{2}, \mu, \nu\right) \mathscr{B}_{\bar{c}}\left(\xi_{2}, Q, p_{T}^{\text {veto }}, R^{2}, \mu, \nu\right) \mathcal{S}\left(p_{T}^{\text {veto }}, R, \mu, \nu\right)\right]_{q^{2}=Q^{2}}
$$

"Collinear anomaly"
In the perturbative region $\bar{B}_{i}\left(\xi, p_{T}^{\text {veto }}, R\right)=\sum_{j=g, q, \bar{q}} \int_{\xi}^{1} \frac{d z}{z} \bar{I}_{i j}\left(z, p_{T}^{\text {veto }}, R, \mu\right) \phi_{j / P}(\xi / z, \mu)$

* The product of reduced beam functions is independent of the factorization scale thorough the calculated order.
* In our case this means $\frac{d}{d \ln \mu}\left[\bar{B}_{q}\left(\xi_{1}, p_{T}^{\text {veto }}, R\right) \bar{B}_{\bar{q}}\left(\xi_{2}, p_{T}^{\text {veto }}, R\right)\right]=O\left(\alpha_{s}^{3}\right)$

Coefficient of Collinear Anomaly for $q \bar{q}$ case

$$
\begin{aligned}
& F_{q q}\left(p_{T}^{\text {veto }}, \mu\right)=a_{S} F_{q q}^{(0)}+a_{S}^{2} F_{q q}^{(1)}+a_{S}^{3} F_{q q}^{(2)}+\ldots, \quad a_{S}=\frac{\alpha_{S}}{4 \pi} \\
& F_{q q}^{(0)}=\Gamma_{0}^{F} L_{\perp}+d_{1}^{\mathrm{veto}}(R, F) \\
& F_{q q}^{(1)}=\frac{1}{2} \Gamma_{0}^{F} \beta_{0} L_{\perp}^{2}+\Gamma_{1}^{F} L_{\perp}+d_{2}^{\text {veto }}(R, F) \\
& F_{q q}^{(2)}=\frac{1}{3} \Gamma_{0}^{F} \beta_{0}^{2} L_{\perp}^{3}+\frac{1}{2}\left(\Gamma_{0}^{F} \beta_{1}+2 \Gamma_{1}^{F} \beta_{0}\right) L_{\perp}^{2}+\left(\Gamma_{2}^{F}+2 \beta_{0} d_{2}^{\text {veto }}(R, F)\right) L_{\perp}+d_{3}^{\text {veto }}(R, F) \\
& \begin{array}{cc}
d_{1}^{\mathrm{veto}}(R, F)=0 & f(R, B)=C_{B}\left(-\frac{\pi^{2} R^{2}}{12}+\frac{R^{4}}{16}\right) \quad \\
d_{2}^{\text {veto }}(R, B)=d_{2}^{B}-32 C_{B} f(R, B) & +C_{A}\left(c_{L}^{A} \ln R+c_{0}^{A}+c_{2}^{A} R^{2}+c_{4}^{A} R^{4}+\ldots\right) \\
\text { and } c_{i}^{f} \text { for } i<10, \\
\text { see } 1307.0025
\end{array}, \\
& d_{3}^{\text {veto }} \sim-8.3 \times 64 C_{B} \ln ^{2}\left(R / R_{0}\right)+O(\ln (R))
\end{aligned}
$$

Approximations to $d_{2}^{\text {veto }}$

* Range of validity is

$$
\frac{p_{T}^{\text {veto }}}{Q} \ll R \ll \ln \left(\frac{Q}{p_{T}^{\text {veto }}}\right)
$$

* At too small R terms of order $\ln ^{n} R$ which are not covered by the factorization formula.
* At too large R, factorization formula breaks down.
* Results are presented as power series in R
* At $R \sim 0.4$ logarithmic approximation is about 25% too low.
* Results should be valid in a range around the experimentally preferred $R \sim 0.4-0.5$

Rescaled $d_{2}^{\text {veto }}$ showing that limited number of terms in expansion is quite adequate for $R<1$.

Estimated dependence on approximate $d_{3}^{\text {veto }}$

* Effect of R_{0} dependence in approximate form for $d_{3}^{\text {veto }}$
* $d_{3}^{\text {veto }} \sim-8.3 \times 64 C_{B} \ln ^{2}\left(R / R_{0}\right)$
$\cdot\left(\frac{m_{H}}{p_{T}^{\text {veto }}}\right)^{-2 \frac{\alpha_{s}(\mu)}{4 \pi} d_{3}^{\text {veto }}}$
- In this approximation, $d_{3}^{\text {veto }}$ increases the cross section.
* Estimate $\sim \leq 2.5 \%$ at $p_{T}^{\text {veto }}=25$ GeV and $R=0.4$

$R_{0}=1 / 2 \quad R_{0}=1$
$R_{0}=2$

Jet veto in Z production

- At $p_{T}^{\text {veto }} \sim 25-30$ all calculations agree within errors.
* However error estimates differ between NNLO and $\mathrm{N}^{3} \mathrm{LL}+\mathrm{NNLO}$.
- For $p_{T}^{\text {veto }}=30 \mathrm{GeV}$, $\left(\ln \left(Q / p_{T}^{\text {veto }}=1.1\right) \ll\left(\eta_{\text {cut }}=2.4\right)\right.$
* As expected at (unphysically) small $p_{T}^{\text {veto }}$ resummed calculations show deviations from fixed order.
* Jet veto resummation probably not so necessary here.

Jet-veto in Higgs production

* Uncertainties estimated by varying renormalization and factorization and rapidity scales by $2, \frac{1}{2}$ and adding in quadrature.
* In the main the perturbative series is well-behaved at moderate R and successive orders lie with in the band of the preceding order
* Summation appears needed in this case;

Jet veto in $W^{+} W^{-}$production

* Errors improve going from $\mathrm{N}^{2} \mathrm{LL}+\mathrm{NNLO}$ to $\mathrm{N}^{3} \mathrm{LL}+\mathrm{NNLO}$
* Theoretical errors better than experimental.
* CMS data taken from $\underline{2009.00119}$

$\underline{2210.10724}$

Jet veto in $W^{+} W^{-}$production

* Evidence that neither NNLO nor $\mathrm{N}^{3} \mathrm{LL}$ is sufficient, especially around $p_{T}^{\text {veto }}=25-30 \mathrm{GeV}$
* R dependence is modest.
* $\left|\eta_{\text {cut }}\right|<4.5$, so we can argue that
$\left(\ln \left(Q / p_{T}^{\text {veto }}\right)=1.3-2.2\right)<4.5$

Conclusion

* Calculations at NNLO show mainly smaller power corrections for qT slicing than for zero-jettiness slicing. Calculation times roughly equal.
- The small q_{T} resummation in CuTe-MCFM has been extended to all color singlet final states with pairs of massive vector bosons - public release soon;
* The fine-grained experimental study of vector boson pair processes where the resummation effects will be crucial is, in the main, still to come;
* We have compared our predictions with the available data;
- We have also resummed cross sections at $\mathrm{N}^{3} \mathrm{LL}_{p}+\mathrm{NNLO}$ for all color singlet final state processes and for a $p_{T}^{\text {veto }}$ at all rapidities. Necessary for Higgs production and for vector boson pair production.

Backup

Solution to RGE equations

$$
\frac{d}{d \ln \mu} C(Q \mu)=\left[\Gamma_{\text {cusp }}(\mu) \ln \frac{Q^{2}}{\mu^{2}}\right] C(Q \mu)
$$

* Traditional solution to the LL equation

$$
\begin{aligned}
& C(Q, \mu)=\exp [2 S(Q, \mu)] C(Q, Q) \frac{d}{d, \ln \mu} S(Q, \mu)=-\Gamma_{\text {cusp }}\left(\alpha_{S}(\mu)\right) \ln \frac{\mu}{Q} \\
& S(Q, \mu)=-\int_{Q}^{\mu} \frac{d \mu^{\prime}}{\mu^{\prime}} \Gamma_{\text {cusp }}\left(\alpha_{S}\left(\mu^{\prime}\right)\right) \ln \frac{\mu}{Q}
\end{aligned}
$$

* We can write solution in terms of running coupling

$$
\begin{aligned}
& S(Q, \mu)=-\int_{\alpha_{S}(Q)}^{\alpha_{S}(\mu)} d \alpha \frac{\Gamma_{\mathrm{cusp}}(\alpha)}{\beta(\alpha)} \int_{\alpha_{S}(Q)}^{\alpha} \frac{d \alpha^{\prime}}{\beta\left(\alpha^{\prime}\right)} \frac{d \alpha_{S}}{d \ln \mu}=\beta\left(\alpha_{S}\right) \\
& S(Q, \mu) \rightarrow \frac{\Gamma_{0}}{4 \pi k_{0}^{2}} \frac{1}{\alpha_{S}(Q)}\left(\frac{r-r \ln r-1}{r}\right) \text { where } r=\alpha_{S}(\mu) / \alpha_{S}(Q)
\end{aligned}
$$

* We recover the double log, setting

$$
\beta\left(\alpha_{S}\right)=-k_{0} \alpha_{S}^{2} \text { and } \frac{1}{r}=1-k_{0} \alpha_{S}(Q) \ln (Q / \mu)
$$

Second comment on 2207.07037

- If we assume $f(x) \sim 1 / x$
* However for any steeper function as $x \rightarrow 1$, the

$$
\bar{I} \otimes f=\int_{x}^{1} \frac{d z}{z} \bar{I}(z) f(x / z) \sim \frac{1}{x} \int_{x}^{1} d z \bar{I}(z)
$$ range of z sampled is close to $z=1$.

* The result of 2207.07037 is almost entirely analytic; it is crucial that the behavior at $z=1$ is accurately evaluated.
* Certain of the beam functions contain terms of order $\frac{f(z) R^{n}}{(1-z)^{n+1}}$ where $f(z)$ is a complicated function involving dilogarithms, trilogarithms etc.
* The singularity at $z=1$ is only apparent, and the analytic forms must be expanded for numerical stability (easy to do...)

[^0]: Samuel Abreu, ${ }^{a, b}$ Jonathan R. Gaunt, ${ }^{\text {e }}$ Pier Francesco Monni, ${ }^{a}$ Luca Rottoli, ${ }^{\text {d }}$ Robert Szafron ${ }^{\text {e }}$
 ${ }^{=}$CERN, Theoretical Physics Department, CH-1211 Geneva 29, Switzerland
 ${ }^{\text {b }}$ Higys Centre for Theoretical Physics, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EHg sFD, Scotland, United Kingdom
 ${ }^{\text {c Department of Physics and Astronomy, University of Manchester, Manchester M1s 9PL, United }}$ Kingdom
 ${ }^{\text {d }}$ Department of Physics, University of Zürich, CH-8057 Zürich, Switzerland
 ${ }^{\text {ch }}$ Department of Physics, Brookhaven National Laboratory, Upton, N.Y., 1197s, U.S.A.
 E-mail: sanuel.abreuđcern.ch, jonathan.gauntonanchester.ac.uk,
 pler.monn1@cern.ch, luca.rottol1बphysik.uzh.ch, razafron@bnl.gov

