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MCFM
❖ MCFM contains about 350 processes at hadron-colliders evaluated at NLO.

❖ Since matrix elements are calculated using analytic formulae, one can 
expect better performance, in terms of stability and computer speed, than 
fully numerical codes.

❖ In addition MCFM contains several process evaluated at NNLO using both 
the jetti-ness and the  slicing schemes.

❖ NNLO results for , require process  at NLO, and 
two loop matrix elements for

❖ Recent(ish) additions to virtual matrix elements

❖ H+4 partons with full mass effects at one-loop  (2002.04018) 

❖ Vector boson pair production at one loop: simplified analytic results 
for the process  (2203.17170) (work with Giuseppe de 
Laurentis)

qT

pp → X pp → X + 1 parton
pp → X

qq̄ℓℓ̄ℓ′ ̄ℓ′ g

2

https://arxiv.org/abs/2002.04018
https://arxiv.org/abs/2203.17170


NNLO results
❖ In a recent paper 

(2202.07738) we tried to 
document all the processes 
calculated at NNLO.

❖ About 50% are available in 
MCFM.

❖ We use both  slicing and 
jetti-ness slicing.

❖ However I should note 
that in some cases N3LO is 
now the start of the art 
(e.g. 1811.07906 ,2102.07607 
2203.01565, 2209.06138)

qT

https://link.springer.com/article/10.1007/JHEP06(2022)002
https://arxiv.org/abs/1811.07906
https://arxiv.org/abs/2102.07607
https://arxiv.org/abs/2203.01565
https://arxiv.org/abs/2209.06138


Examples of NNLO results from MCFM
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Comparative study of jettiness and  slicingqT

❖ Leading log behavior of a 
color singlet cross section 
integrated up to a small cutoff 
value

❖ Corresponding LL formula for 
zero-jettiness

❖ Similar size for the above cut 
region

 ΣT = σ0 exp[ −
αsCF

2π
ln2((qcut

T )2/Q2)]
= σ0 exp[ −

2αsCF

π
ln2(qcut

T /Q)]

Στ = σ0 exp[ −
αsCF

π
ln2 τcut

Q ]
τcut

Q
≃ ( qcut

T

Q )
2

For :    qT ϵT = qcut
T /Q

For jettiness:   ϵτ = (τcut /Q)
1
2



Comparison of NNLO slicing methods
❖ The jettiness method divides 

phase space on basis of jettiness; 

❖  slicing method appears to 
have smaller power corrections 
in most cases for equal 
computational burden, but not 
for all (viz. );

❖ However jettiness has the 
proven ability to deal with 
W+jet (1504.02131), Z+jet (1512.01291), 
Higgs+jet, (1906.01020).

qT

Wγ, Zγ, γγ

ϵT = qT /Q, ϵτ = (τcut /Q)1/ 2

https://arxiv.org/abs/1504.02131
https://arxiv.org/abs/1512.01291
https://arxiv.org/abs/1906.01020


Open square shows the MATRIX result 1711.06631 for ϵT = 0.15 %

https://arxiv.org/abs/1711.06631


Jetti-ness appears to be comparable or slightly 
better for processes involving photons.



Transverse momentum resummation at 
N LL+NNLO for color singlet processes3



All orders result for  distributionqT
dσ

dQ2dydq2
T

=
4πα2
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j
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6
) −

10TFnf

9 }
B(αs(μ)) = =

∞

∑
n=0

B(n) ( αS

2π )
n

, B(1) = − 3CF,
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3
4
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193
12

+ 6ζ3) + TRnf(
17
3
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4π2

9
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❖ At small  we must 
sum large logarithms.

❖ Procedure for color 
singlet final states based 
on Collins, Sterman and 
Soper (1984)  

qT

https://doi.org/10.1016/0550-3213(85)90479-1
https://doi.org/10.1016/0550-3213(85)90479-1
https://doi.org/10.1016/0550-3213(85)90479-1


To “b” or not to “b”

❖ b-space, (Fourier conjugate to )
❖ Advantages

❖ Elegant inclusion of transverse momentum conservation.

❖
Perturbative predictions for intercept 

❖ Disadvantages
❖ b-integral extends to infinity;  integrate over Landau pole in the coupling.

❖

Handled by  so  ; however this substitution 

changes prediction even at large  where fixed order perturbation theory 
should work.

❖ Difficulties with matching onto fixed order perturbation theory.

qT

dσ/dq2
T

qT=0

b → b* =
b

1 + (b/blim)2
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Small  in SCET languageqT

d2σ
dq2
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∑
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∑
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⊥

Language of Becher and Neubert, see for example, Becher, Broggio, Ferroglia, 1410.1892 

Confirms the 
expected 
scaling 

xT ∼ 1/qT

https://arxiv.org/abs/1410.1892


Collinear Anomaly
❖ In SCET the beam functions and the soft function have light-cone 

divergences which are not regulated by dimensional regularization;

❖ These are not soft divergences; they are due to gluons at large rapidity;

❖ This requires an additional regulator, which can be removed at the end 
of the calculation;

❖ However a vestige of this regulator remains. The product of the two 
beam functions depends on the large scale of the problem,  ;

❖ This has been called the “collinear factorization anomaly” of SCET. 
Quantum effects modify a classical symmetry,  with 
only  unbroken.

Q

p → λp, p̄ = λ̄p̄
λλ̄ = 1



Matching to fixed order

❖ Fixed order result 
recovered up to higher 
order terms, (which can 
induce unphysical 
behavior).

❖ Also problems at small , 
introduce cutoff ;

❖ So we need to implement 
a transition function, and 
choose its parameters on a 
case-by-case basis.

qT
q0

dσN3LL

dqT naively matched to NNLO
=

dσN3LL

dqT
+ Δσ,

dσN3LL

dqT matched to NNLO
= t(x)[ dσN3LL

dqT
+ Δσ |qt>q0 ]+ (1 − t(x))

dσNNLO

dqT

where Δσ = [dσNNLO

dqT
−

dσN3LL

dqT
]expanded to NNLO

Becher and Neumann, 2009.11437

https://arxiv.org/abs/2009.11437


Error estimate
❖ We estimate the perturbative truncation uncertainty by varying the 

renormalization, factorization and resummation scales by the 
multipliers

❖ For fixed order we use 

❖  is characteristic scale at small 

❖ To set the resummation scale, we first calculate  for every event and 
then set  so that for small 

,  approaches  and it remains in the perturbative region.

(kF; kR) ∈ {(2,2), (0.5,0.5), (2,1), (1,1), (0.5,1), (1,2), (1,0.5)} .
μF = kF Q̂, μR = kR Q̂

q* = Q2 exp (−π/Ci /αs(q*)) qT

q*
μ = max{kF × qT + q* exp(−qT /q*), 2 GeV}

qT μ q*

Becher, Neumann, 2009.11437

https://arxiv.org/abs/2009.11437


Vector boson pair production at small qT

❖ Resummation effects are 
potentially more important for 
vector boson pair production at 
the same  since Q is larger.

❖ Resummation at N3LL+NNLO 
becomes important below 

 GeV.

qT

∼ 50 − 100
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https://arxiv.org/abs/2009.01186


Comparison with CMS data at 13 TeV
❖ We simplify the analysis, by 

applying the same cuts to both 
electrons and muons.

❖ We neglect identical  particle 
effects.

❖ Resummation improves 
description below  GeV.

❖ More data will allow finer 
binning, so the resummation 
effects will be ever more 
necessary. 

qT ∼ 75

0.000

0.005

0.010

0.015

0.020

0.025

0 100 2001
σ
⋅d
σ

dq
T
 [f

b/
G

eV
]

CMS NNLO N3LL+NNLO

0.6

0.8

1.0

1.2

0 100 200
qT
ZZ [GeV]

ra
tio

 to
 C

M
S



CMS results on lepton  in ZZqT

❖ CMS also present results on the 
lepton  (summed over all 
leptons). Here the effect of 
resummation is minimal

❖ However the  of the leading 
lepton shows an effect.
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ATLAS data ZZ
❖ The ATLAS 

collaboration (2103.01918) 
performed 
measurements of the 

 distribution in five 
slices of 

❖ Expectation is that 
resummation should 
improve agreement 
with the data, as  
increases.
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https://arxiv.org/abs/2103.01918


Truth WW cross section

❖ Here we show the 
truth  cross 
section.

❖ Much more 
important for WW 
is the cross 
section to reduce 
background from 

qT(WW)

pveto
T

tt̄



Jet veto cross sections

see, for example, Becher et al, 1307.0025 ,  Stewart et al, 1307.1808

https://arxiv.org/abs/1307.0025
https://arxiv.org/abs/1307.1808


Jet veto cross section
❖ Jets defined using sequential 

recombination jet algorithms, 
(n=1(anti- ), n=0(Cambridge-Aachen) 
n=-1( );

❖ Jet vetos also generate large 
logarithms, as codified in 
factorization formula; however 
logarithms are smaller if 

;

❖ Beam and Soft functions for 
leading jet  recently calculated 
at two-loop order using an 
exponential regulator by Abreu 
et al.

❖ Jet veto cross sections are 
simpler than the  resummed  
calculation (No b space).

kT
kT

pveto
T ∼ 25 GeV

pT

pT

dij = min(pn
Ti, pn

Tj)
Δy2

ij + Δϕ2
ij

R
, diB = pn

Ti

d2σ(pveto
T )

dM2dy
= σ0 CV(−M2, μ)

2

[ℬc(ξ1, M, pveto
T , R2, μ, ν) ℬc̄(ξ2, M, pveto

T , R2, μ, ν) × 𝒮(pveto
T , R2, μ, ν)]

ξ1,2 = (M/ s) e±y  σ0 =
4πα2

3NcM2s

Beam functions
Abreu et al, 
2207.07037

Soft function
Abreu et al, 
2204.03987

Rapidity 
regulator ν

https://arxiv.org/abs/2207.07037
https://arxiv.org/abs/2204.02987


Comments on Abreu et al
❖ Important step in making SCET 

results for almost complete N3LL 
available to consumers, (such as us 
in MCFM). 

❖ Unfortunately, in the ancillary 
materials for 2207.07037, the file 
BeamFunctionQQCACF.m contained 
a parameter R0, which should have 
been set to zero. (Thanks to Pier 
Monni for discussions - arXiv result 
will be updated after article is 
accepted for publication).

❖ Jets vetoed over all rapidity

Beam functions
Abreu et al, 
2207.07037

Soft function
Abreu et al, 
2204.03987

https://arxiv.org/src/2207.07037v1/anc/DeltaI/BeamFunctionQQCACF.m
https://arxiv.org/abs/2207.07037
https://arxiv.org/abs/2204.02987


Jet veto cross sections in a limited rapidity range
❖ Formula so far are valid for jet cross 

sections which are vetoed for all 
values of rapidity  

❖ Experimental analyses perform jet 
cuts for 

❖ In 1810.12911, three theoretical 
regions are identified

❖  (standard jet 
veto resummation)

❖  ( -dependent 
beam functions)

❖  (collinear non-
global logs)

ηcut

η < ηcut

ηcut ≫ ln(Q/pveto
T )

ηcut ∼ ln(Q/pveto
T ) ηcut

ηcut ≪ ln(Q/pveto
T )
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0 1 2 3 4
0

20
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80

Current theory 
calculation

Typical 
Experimental 

cuts

Strategy: determination where 
resummation is potentially 

important, before considering limited 
rapidity range resummation

https://arxiv.org/abs/1810.12911


Refactorize à la Becher-Neubert

❖ In the perturbative region

❖ The product of reduced beam 
functions is independent of 
the factorization scale 
thorough the calculated 
order.

❖ In our case this means 

[ℬc(ξ1, Q, pveto
T , R2, μ, ν) ℬc̄(ξ2, Q, pveto

T , R2, μ, ν )𝒮(pveto
T , R, μ, ν)]q2=Q2

= ( Q
pveto

T )
−2Fqq(pveto

T ,R,μ)

e2hF(pveto
T ,μ) B̄q(ξ1, pveto

T , R) B̄q̄(ξ2, pveto
T , R)

B̄i(ξ, pveto
T , R) = ∑

j=g,q,q̄
∫

1

ξ

dz
z

Īij(z, pveto
T , R, μ) ϕj/P(ξ/z, μ)

d
d ln μ [B̄q(ξ1, pveto

T , R) B̄q̄(ξ2, pveto
T , R)] = O(α3

s )

“Collinear 
anomaly”



Coefficient of Collinear Anomaly for  case qq̄

F(0)
qq = ΓF

0 L⊥ + dveto
1 (R, F)

F(1)
qq =

1
2

ΓF
0 β0L2

⊥ + ΓF
1 L⊥ + dveto

2 (R, F)

dveto
1 (R, F) = 0

dveto
2 (R, B) = dB

2 − 32CB f(R, B)

L⊥ = 2 ln
μ

pveto
T

f(R, B) = CB( −
π2R2

12
+

R4

16 )
+CA (cA

L ln R + cA
0 + cA

2 R2 + cA
4 R4 + …)

+TFnf (c f
L ln R + c f

0 + c f
2 R2 + c f

4 R4 + …) ,

Coefficients 
and  for ,  

see 1307.0025

cA
i

c f
i i < 10

  Fqq(pveto
T , μ) = aSF(0)

qq + a2
SF(1)

qq + a3
SF(2)

qq + … , aS =
αS

4π

F(2)
qq =

1
3

ΓF
0 β2

0 L3
⊥ +

1
2

(ΓF
0 β1 + 2ΓF

1 β0)L2
⊥ + (ΓF

2 + 2β0dveto
2 (R, F))L⊥ + dveto

3 (R, F)

dveto
3 ∼ − 8.3 × 64CB ln2(R /R0) + O(ln(R)) Log enhanced 

terms of , 
see 1511.02886

dveto
3

Full N LL will require 
knowledge of  

3

dveto
3 (R, F)

https://arxiv.org/abs/1307.0025
https://arxiv.org/abs/1511.02886


Approximations to dveto
2

❖ Range of validity is 

❖ At too small  terms of order  
which are not covered by the 
factorization formula.

❖ At too large , factorization formula 
breaks down.

❖ Results are presented as power series 
in 

❖ At  logarithmic 
approximation is about 25% too low.

❖ Results should be valid in a range 
around the experimentally preferred 

pveto
T

Q
≪ R ≪ ln( Q

pveto
T

)
R lnn R

R

R

R ∼ 0.4

R ∼ 0.4 − 0.5
Rescaled  showing that limited number of terms 

in expansion is quite adequate for .
dveto

2
R < 1



Estimated dependence on approximate dveto
3

❖ Effect of  dependence in 
approximate form for 

❖

❖

❖ In this approximation,  
increases the cross section.

❖ Estimate ~  at =25 
GeV and 

R0
dveto

3

dveto
3 ∼ − 8.3 × 64CB ln2(R/R0)

( mH

pveto
T

)
−2 αs(μ)

4π dveto
3

dveto
3

≤ 2.5 % pveto
T

R = 0.4
R0 = 1/2 R0 = 1 R0 = 2



Jet veto in Z production
❖ At  all calculations 

agree within errors.

❖ However error estimates differ 
between NNLO and N LL +NNLO.

❖ For , 

❖ As expected at (unphysically) small 
 resummed calculations show 

deviations from fixed order.

❖ Jet veto resummation probably not so 
necessary here.

pveto
T ∼ 25 − 30

3

pveto
T = 30 GeV

(ln(Q/pveto
T = 1.1) ≪ (ηcut = 2.4)

pveto
T



Jet-veto in Higgs production

❖ Uncertainties estimated by varying renormalization and factorization and rapidity 

scales by  and adding in quadrature.

❖ In the main the perturbative series is well-behaved at moderate R and successive 
orders lie with in the band of the preceding order

❖ Summation appears needed in this case; 

2,
1
2



Jet veto in  productionW+W−

❖ Errors improve going 
from N LL +NNLO to  
N LL+NNLO

❖ Theoretical errors better 
than experimental.

❖ CMS data taken from 
2009.00119
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2210.10724

https://arxiv.org/abs/2009.00119
https://arxiv.org/abs/2210.10724


Jet veto in  productionW+W−

❖ Evidence that neither 
NNLO nor N LL is 
sufficient, especially around 

GeV

❖ R dependence is modest.

❖ , so we can 
argue that 

3

pveto
T = 25 − 30

|ηcut | < 4.5

(ln(Q/pveto
T ) = 1.3 − 2.2) ≪ 4.5



Conclusion
❖ Calculations at NNLO show mainly smaller power corrections for qT 

slicing than for zero-jettiness slicing. Calculation times roughly equal.

❖ The small  resummation in CuTe-MCFM has been extended to all color 
singlet final states with pairs of massive vector bosons — public release 
soon;

❖ The fine-grained experimental study of vector boson pair processes where 
the resummation effects will be crucial is, in the main, still to come;

❖ We have compared our predictions with the available data;

❖ We have also resummed cross sections at N LL  +NNLO for all color singlet 
final state processes and for a  at all rapidities. Necessary for Higgs 
production and for vector boson pair production.

qT

3
p

pveto
T



Backup 



Solution to RGE equations

❖ Traditional solution to the LL equation

❖ We can write solution in terms of running coupling

❖  

❖ We recover the double log, setting 

β(αS) = − k0α2
S and

1
r

= 1 − k0αS(Q)ln(Q/μ)

d
d ln μ

C(Q μ) = [Γcusp(μ) ln
Q2

μ2 ]C(Q μ)

C(Q, μ) = exp[2S(Q, μ)]C(Q, Q)
d

d ln μ
S(Q, μ) = − Γcusp(αS(μ))ln

μ
Q

S(Q, μ) = − ∫
μ

Q

dμ′ 

μ′ 
Γcusp(αS(μ′ )) ln

μ′ 

Q

dαS

d ln μ
= β(αS)S(Q, μ) = − ∫

αS(μ)

αS(Q)
dα

Γcusp(α)
β(α) ∫

α

αS(Q)

dα′ 

β(α′ )

S(Q, μ) →
Γ0

4πk2
0

1
αS(Q) ( r − r ln r − 1

r ) where r = αS(μ)/αS(Q)



Second comment on 2207.07037
❖ If we assume 

❖ However for any steeper function as , the 
range of  sampled is close to .

❖ The result of 2207.07037 is almost entirely analytic; 
it is crucial that the behavior at  is accurately 
evaluated.

❖ Certain of the beam functions contain terms of 

order where  is a complicated 

function involving  dilogarithms, trilogarithms etc.

❖ The singularity at  is only apparent, and the 
analytic forms must be expanded for numerical 
stability (easy to do…)

f(x) ∼ 1/x

x → 1
z z = 1

z = 1

f(z) Rn

(1 − z)n+1
f(z)

z = 1

Ī ⊗ f = ∫
1

x

dz
z

Ī(z) f(x /z) ∼
1
x ∫

1

x
dz Ī(z)


