NNLO+PS for heavy-quark production

Javier Mazzitelli

PAUL SCHERRER INSTITUT

Workshop on Tools for High Precision LHC Simulations, Ringberg Castle, November 1st 2022

Outline

• Introduction: heavy-quark production

• Transverse momentum resummation and MiNNLO_{PS}: extension to $Q\overline{Q}$

• MiNNLOPS for top-quark pair production

• Extension to $Q\overline{Q}$ +colourless final state

• Summary and outlook

Introduction

- Precise theoretical predictions are indispensable to fully exploit LHC data
- Higher-order (NNLO) QCD corrections are crucial to this end
- Event generators are a cornerstone of experimental analysis

NNLO-accurate event generators are needed

- Topic of this talk: heavy-quark production (+ colourless final state)
- Many important processes fall into this category

- Precision tests of the SM (e.g. m_W , m_t and m_H relation)
- Vacuum stability
- BSM searches

Framework to obtain (NNLO and) NNLO+PS predictions for these processes highly desirable!

Two main ingredients needed for this:

organized in an all-orders resummation formula

This talk:

q_T resummation: color singlet

 $d\sigma^{(\text{sing})} \sim d\sigma^{(0)}_{c\bar{c}} \times \exp\left(-S_c\right) \times \left[HC_1C_2\right]_{c\bar{c};a_1a_2} \times f_{a_1}f_{a_2}$

Parton distribution functions

Collinear functions \rightarrow hard-collinear emissions

Sudakov exponent \rightarrow soft and flavor diagonal emissions

Hard function \rightarrow hard process-dependent radiation

Resummed cross section physical (finite) when $p_T \rightarrow 0$

Can be computed at different logarithmic accuracy depending on which logs are included: LL: $\alpha_s^n L^{n+1}$ NLL: $\alpha_s^n L^n$ NNLL: $\alpha_s^n L^{n-1}$

Can also be 'matched' to the fixed order upon expansion in α_s :

NLL+NLO, NNLL+NLO, NNLL+NNLO

\mathbf{q}_{T} resummation: heavy quark pairs

What changes for heavy-quark production? \rightarrow Emission from final state

- Additional divergencies when FS emission becomes soft
- Obs: no new collinear divercencies since the mass of the quarks regulates them
- Presence of colored FS leads to color interference effects

Colorless FS \rightarrow only 2 hard partons \rightarrow Color charge factors $T_i.T_j$ diagonal in color space Heavy-quark production \rightarrow 4 hard partons \rightarrow unavoidable **color correlations**

$\begin{array}{l} \mathbf{q_{T} resummation: heavy quark pairs} \\ d\sigma^{(\mathrm{sing})} \sim d\sigma^{(0)}_{c\bar{c}} \times \exp\left(-S_{c}\right) \times \left[HC_{1}C_{2}\right]_{c\bar{c};a_{1}a_{2}} \times f_{a_{1}}f_{a_{2}} \\ \downarrow \\ d\sigma^{(\mathrm{sing})} \sim d\sigma^{(0)}_{c\bar{c}} \times \exp\left(-S_{c}\right) \times \left[\mathrm{Tr}(\mathbf{H}\Delta)C_{1}C_{2}\right]_{c\bar{c};a_{1}a_{2}} \times f_{a_{1}}f_{a_{2}} \end{array}$

In the colour singlet case, H is given by the (IR-subtracted) all-orders matrix element for $cc \rightarrow F$

$$H = \operatorname{Tr}(\mathbf{H}) \sim \langle \mathcal{M} | \mathcal{M} \rangle$$

In the $t\bar{t}$ case, the presence of the operator Δ leads to non-trivial color correlations

 $\operatorname{Tr}(\mathbf{H}\Delta) \sim \langle \mathcal{M} | \Delta | \mathcal{M} \rangle$

$$d\sigma^{(\text{sing})} \sim d\sigma_{c\bar{c}}^{(0)} \times \exp\left[-S_{c}(b)\right] \times \left[\text{Tr}(\mathbf{H}\boldsymbol{\Delta})C_{1}C_{2}\right]_{c\bar{c};a_{1}a_{2}} \times f_{a_{1}}f_{a_{2}}$$

$$\text{Tr}(\mathbf{H}\boldsymbol{\Delta}) \sim \langle \mathcal{M} | \boldsymbol{\Delta} | \mathcal{M} \rangle \qquad \text{IR regulated virtual corrections}$$

$$\boldsymbol{\Delta} \sim \exp\left\{-\int_{b_{0}^{2}/b^{2}}^{M} \frac{dq^{2}}{q^{2}} \mathbf{\Gamma}(\alpha_{s}(q))\right\}^{\dagger} \mathbf{D}(\alpha_{s}(b_{0}/b), \phi) \exp\left\{-\int_{b_{0}^{2}/b^{2}}^{M} \frac{dq^{2}}{q^{2}} \mathbf{\Gamma}(\alpha_{s}(q))\right\}$$
Exponential of soft anomalous dimension matrix Operator leading to azimuthal correlations

- Soft anomalous dimension encodes logarithmic behavior of soft wide-angle emissions
- **D** encodes the azimuthal dependence of the constant terms, with $\langle D \rangle_{\Phi,av} = 1$
- Even for q_T azimuthally-averaged cross sections, **D** contributes in the gluon channel due to the interference with the collinear coefficient functions (starting at NNLO)
- All the ingredients for NNLL+NNLO resummation are now known except for $\mathbf{D}^{(2)}$
- $D^{(2)}$ contributes with a constant term at $O(\alpha_s^4)$ that vanishes upon azimuthal average
- Translation between virtual corrections and IR-regulated *M* highly non trivial! The correct finite part of subtraction operator needs to be explicitly computed

$$|\mathcal{M}\rangle = \left(1 - \tilde{\mathbf{I}}\right) |\mathcal{M}\rangle_{\mathrm{unreg}}$$

Extracted from integration of soft current at fixed q_T

Subtraction operator: NLO

- I operator can be extracted from computation of $d\sigma/d^2q_T$
- Only new soft singularities \rightarrow integrate the (subtracted) **soft current**

E.g. at NLO:

• After integration the following NLO subtraction operator can be obtained:

Subtraction operator

10

- Computation finished few years ago Catani, Devoto, Grazzini, JM (in prep), see also Angeles-Martinez, Czakon, Sapeta (18')
- Last missing ingredient for $O(\alpha_s^4)$ fixed-order expansion of resummation formula
- Results mostly analytical, numerical integration for some pieces

Extending MiNNLO for $\ensuremath{t\bar{t}}$

- Having the low-qT factorization formula available to the desired accuracy, we are in a position to extend the MiNNLO method to $Q\overline{Q}$
- However, the more complicated colour structure doesn't allow to follow the colour-singlet derivation
- More specifically, since the $t\bar{t}$ factorization formula does **not** take the simple form:

$$d\sigma^{(\mathrm{sing})} \sim \exp\left[-S_c(p_T)\right] \times \mathcal{L}(p_T)$$

used to describe the NNLO cross section as

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_{\mathrm{F}}\mathrm{d}p_{\mathrm{T}}} = \frac{\mathrm{d}}{\mathrm{d}p_{\mathrm{T}}} \bigg\{ \exp[-\tilde{S}(p_{\mathrm{T}})]\mathcal{L}(p_{\mathrm{T}}) \bigg\} + R_f(p_{\mathrm{T}}) \tag{1}$$

 $\mathrm{Tr}(\mathbf{H}\Delta) \sim \langle \mathcal{M} | \Delta | \mathcal{M} \rangle \longrightarrow \text{``Sudakov''} \times \langle \mathcal{M} | \mathcal{M} \rangle + \mathrm{h.o.}$

11

Extending MiNNLO for $\ensuremath{t\bar{t}}$

We can arrive to the following expression keeping NNLO accuracy:

Extending MiNNLO for $\ensuremath{t\bar{t}}$

We can arrive to the following expression keeping NNLO accuracy:

• First ever NNLO+PS for a colored final state in hadronic collisions

Numerical results

Scale setting:

- Overall Born coupling: $\alpha_s(H_T/4)$
- MiNNLO scale setting: $\mu_R = \mu_F = m_{t\bar{t}} e^{-L}$, $Q = m_{t\bar{t}} / 2$
- Scale uncertainties through 7-point variation
- No direct correspondence between MiNNLO scales and NNLO scales
- Upon integration over p_T they are of the order of $m_{t\bar{t}}$

Comparison to NNLO (computed with MATRIX) with $\mu_0 = m_{t\bar{t}}$ and $\mu_{LO} = H_T/4$

Modified logarithm:

$$L = \begin{cases} log(Q/p_T) & for p_T < Q/2 \\ 0 & for p_T > Q \\ Smooth interpolation in the middle \end{cases}$$

Showering:

We shower with Pythia8 (Monash 2013 tune). For FO comparison (keeping top quarks stable) we do not include hadronization effects, MPI, or QED shower (for other results these are on)

Parton level results

- Excellent agreement between MiNNLO and NNLO total cross sections, differences at the per-mille level
- Obs: even larger differences could be expected due to different scale settings and h.o. effects
- Similar size of uncertainties between MiNNLO and NNLO results
- Large reduction of scale uncertainties w.r.t. MiNLO' [Obs: MiNLO' for tt is also a new result]
- Excellent agreement in shape of rapidity distribution
- Excellent agreement with data*

*[data from CMS semileptonic analysis extrapolated to inclusive tt PS]

Parton level results

- Invariant mass of the $\ensuremath{t\bar{t}}$ system
- Full compatibility between MiNNLO and NNLO results in the whole range
- Small differences in shape expected
- Slightly larger uncertainties in the tail
- Good agreement with data except for region close to threshold

Particle level results

• We now compare our event generator to particle-level data from:

• Top decays included using ratio of tree-level decayed and undecayed MEs [As implemented in POWHEG ttbarj, Alioli, Moch, Uwer 1110.5251]

$$dP(\Phi_{\text{dec.}}|\Phi_{\text{undec.}}) = \frac{1}{\text{BR}(t \to b\bar{\ell}\nu) \text{ BR}(\bar{t} \to \bar{b}\ell\bar{\nu})} \frac{\mathcal{M}_{\text{dec.}}(\Phi_{\text{undec.}}, \Phi_{t \to b\bar{\ell}\nu}, \Phi_{\bar{t} \to \bar{b}\ell\bar{\nu}})}{\mathcal{M}_{\text{undec.}}(\Phi_{\text{undec.}})} d\Phi_{t \to b\bar{\ell}\nu} d\Phi_{\bar{t} \to \bar{b}\ell\bar{\nu}}$$

- Simple and fast procedure, though only LO accurate (obs: LO accuracy in tt, ttJ and ttJJ observables)
- Top-quarks and W bosons kept on-shell in what follows, though inclusion of off-shellness possible within the code
- Alternative: generate tt events and use MadSpin to decay them. Results compatible within uncertainties

Particle level results: leptonic

[ATLAS 1910.08819]

- Azimuthal angle between leptons \rightarrow sensitivity to spin correlations in top-quark decays
- Very good agreement with data in all invariant mass slices (despite spin correlations in decay being only considered at LO)
- Data close to upper band of the MiNNLO prediction (also in other distributions)

Obs: total XS slightly smaller than 'usual' value (top++) due to resummation effects and different scale settings

Particle level results: semi-leptonic [CMS 1803.08856]

 $pp \to t\bar{t} \to \ell + jets @ 13 \, TeV$ $pp \to t\bar{t} \to \ell + jets @ 13 \, TeV$ 60 MINNLO_{PS} MINNLO_{PS} 10^{0} MiNLO^{\prime} MINLO' 50 $d\sigma/dp_{T,j_{W_1}} [pb/GeV]$ CMS $(35.8 \, \text{fb}^{-1})$ CMS $(35.8 \, \text{fb}^{-1})$ $d\sigma/d|\eta|_{j_{W1}}$ [pb] 40 30 20 10 10^{-2} 0 ratio to MINNLO_{PS} ratio to MINNLO_{PS} 1.21.01.00.8 0.80.6 0.6 2.51.52.00.51.00.0100200 300 $p_{T,j_{W1}}$ [GeV] $|\eta|_{j_{W1}}$

- Pseudo-rapidity and transverse momentum of the leading jet coming from hadronic W decay
- Excellent description both in shape and normalization
- Large reduction of uncertainties w.r.t. NLO-accurate generator

[JM, Monni, Nason, Re, Wiesemann, Zanderighi] Particle level results: semi-leptonic [CMS 1803.08856]

- Invariant mass of the reconstructed top-quark-pair system
- Slight shape difference compared to data, but excellent agreement within uncertainties
- Agreement even in the first bin, in variance with inclusive extrapolated results
- Obs: more effects included in the shower in this case (QED, MPI, hadronization) which might account for this difference
- Highlights the importance of doing data-theory comparison in fiducial PS

Particle level results: fully hadronic [ATLAS 2006.09274]

- Good agreement in fully hadronic final state, though experimental uncertainties much larger
- Obs: inclusion of MPI has a large impact in normalization (~10% effect)
- Strong reduction of uncertainties w.r.t. NLO+PS in regions inclusive in additional radiation
- Similar uncertainties e.g. for large Njets, where NNLO accuracy is not met
- Shape of p_T distributions much better described at NNLO+PS

Particle level results

Extension to $Q\overline{Q}F$

- No additional conceptual complication in low-q^T structure, nor in MiNNLOPS
- However, perturbative ingredients need to be available for general kinematics

Finite piece of two-loop subtraction operator (i.e. NNLO soft contributions)

- Old results: mostly analytic assumption QQ back-to-back at LO grid+interpolation
- New results: extension to QQF kinematics [Devoto, JM] more pieces computed numerically on-the-fly numerical integration
- Implementation in library easily linked to POWHEG, MATRIX

Soft function for Heavy quark production in ARbitrary Kinematics

- Working towards a completely general MiNNLOPS implementation for QQF [JM, Wiesemann]
- Goal: framework with only needed input being the two-loop virtual corrections (tree and one-loop amplitudes: general interface to OpenLoops)

Extension to $Q\overline{Q}F$

We have generated some VERY PRELIMINARY distributions for ttH
 [JM, Wiesemann]

 $pp \rightarrow t\bar{t}H @ 13 \text{TeV}$ $pp \rightarrow t\bar{t}H @ 13 \text{TeV}$ 3.511 MARY 3.0 150- MiNNLO_{app} 2.5- MiNLO' $d\sigma/dp_{T,H}$ (fb/GeV) (df) 100 مراطع) الم — NLO 2.01.5.0 50— MiNNLO_{app} — MiNLO 0.5- NLO 0.01.3NLO ratio to NLO ratio to 1.00.90.80.70.750100150200250300 0 -2-121 3 $p_{T,H}$ (GeV) y_H

• MiNNLOps results are exact except for two-loop, for which we set $H^{(2)} = 0$ —

Only per-mille-level effect in total XS [see Massimiliano's talk]

• Note that MiNLO' results are a also a new result for this type of processes

Summary and Outlook

- Many processes involving heavy-quarks are central in LHC phenomenology
- Accurate predictions and event generators are crucial
- NNLO+PS generator for tt publicly available in POWHEG
- First NNLO-accurate event generator for heavy-quark production
- Low-q_T factorization now complete (up to NNLO) for $Q\overline{Q}$ +colourless
- Fixed-order applications discussed later today (talks by Luca and Massimiliano)
- Extension of MiNNLOPS to heavy-quark + colourless underway
- Stay tuned!

Thanks!

Backup slides

$$d\sigma^{(\text{sing})} \sim d\sigma^{(0)}_{c\bar{c}} \times \exp\left[-S_{c}(b)\right] \times \left[\text{Tr}(\mathbf{H}\boldsymbol{\Delta})C_{1}C_{2}\right]_{c\bar{c};a_{1}a_{2}} \times f_{a_{1}}f_{a_{2}}$$

$$S = \int_{b_{0}/b}^{M^{2}} \frac{dq^{2}}{q^{2}} \left[A(\alpha_{s}(q))\log\frac{M^{2}}{q^{2}} + B(\alpha_{s}(q))\right] \qquad \text{Tr}(\mathbf{H}\boldsymbol{\Delta}) \sim \left\langle \mathcal{M} | \boldsymbol{\Delta} | \mathcal{M} \right\rangle$$

$$\boldsymbol{\Delta} \sim \exp\left\{-\int_{b_{0}^{2}/b^{2}}^{M} \frac{dq^{2}}{q^{2}} \mathbf{\Gamma}(\alpha_{s}(q))\right\}^{\dagger} \mathbf{D}(\alpha_{s}(b_{0}/b), \phi) \exp\left\{-\int_{b_{0}^{2}/b^{2}}^{M} \frac{dq^{2}}{q^{2}} \mathbf{\Gamma}(\alpha_{s}(q))\right\}$$

• We can simplify the $\Gamma^{(2)}$ contribution:

$$\Gamma_t = \frac{\alpha_s}{2\pi} \Gamma_t^{(1)} + \frac{\alpha_s^2}{(2\pi)^2} \Gamma_t^{(2)} + \dots \quad \text{already an } (\alpha_s)^2 \text{ prefactor}$$

• Up to NNLO it will only enter at the lowest possible order

$$\langle \mathcal{M} | \boldsymbol{\Delta} | \mathcal{M} \rangle \sim \langle \mathcal{M} | \boldsymbol{\Delta}_{\mathrm{NLL}} | \mathcal{M} \rangle - \int \frac{dq^2}{q^2} \frac{\alpha_s^2(q)}{(2\pi)^2} \langle \mathcal{M}^{(0)} | \boldsymbol{\Gamma}^{(2)} + \boldsymbol{\Gamma}^{(2)\dagger} | \mathcal{M}^{(0)} \rangle$$

Same kind of term generated by $\mathsf{B}^{\scriptscriptstyle(2)}$

• We can actually include it via the replacement

$$B^{(2)} \to B^{\prime(2)} = B^{(2)} + \frac{\langle \mathcal{M}^{(0)} | \mathbf{\Gamma}^{(2)} + \mathbf{\Gamma}^{(2)\dagger} | \mathcal{M}^{(0)} \rangle}{|\mathcal{M}^{(0)}|^2} \qquad \mathbf{1}$$

Already projected over *M*, this is now just a number

$$d\sigma^{(\text{sing})} \sim d\sigma_{c\bar{c}}^{(0)} \times \exp\left[-S_{c}(b)\right] \times [\text{Tr}(\mathbf{H}\Delta)C_{1}C_{2}]_{c\bar{c};a_{1}a_{2}} \times f_{a_{1}}f_{a_{2}}$$

$$S = \int_{b_{0}/b}^{M^{2}} \frac{dq^{2}}{q^{2}} \left[A(\alpha_{s}(q))\log\frac{M^{2}}{q^{2}} + B(\alpha_{s}(q))\right] \quad \text{Tr}(\mathbf{H}\Delta) \sim \langle \mathcal{M} | \Delta | \mathcal{M} \rangle$$

$$\Delta \sim \exp\left\{-\int_{b_{0}^{2}/b^{2}}^{M} \frac{dq^{2}}{q^{2}} \mathbf{r}(\alpha_{s}(q))\right\}^{\dagger} \mathbf{D}(\alpha_{s}(b_{0}/b), \phi) \exp\left\{-\int_{b_{0}^{2}/b^{2}}^{M} \frac{dq^{2}}{q^{2}} \mathbf{r}(\alpha_{s}(q))\right\}$$
Now we have
$$d\sigma^{(\text{sing})} \sim d\sigma_{c\bar{c}}^{(0)} \times \exp\left[-S_{c}'(b)\right] \times [\text{Tr}(\mathbf{H}\Delta_{\text{NLL}})C_{1}C_{2}]_{c\bar{c};a_{1}a_{2}} \times f_{a_{1}}f_{a_{2}}$$

$$S' = \int_{b_{0}/b}^{M^{2}} \frac{dq^{2}}{q^{2}} \left[A(\alpha_{s}(q))\log\frac{M^{2}}{q^{2}} + B'(\alpha_{s}(q))\right] \quad \text{Tr}(\mathbf{H}\Delta_{\text{NLL}}) \sim \langle \mathcal{M} | \Delta_{\text{NLL}} | \mathcal{M} \rangle$$

$$\Delta_{\text{NLL}} \sim \exp\left\{-\int_{b_{0}^{2}/b^{2}}^{M} \frac{dq^{2}}{q^{2}} \frac{\alpha_{s}(q)}{2\pi} \mathbf{r}^{(1)}\right\}^{\dagger} \mathbf{D}(\alpha_{s}(b_{0}/b), \phi) \exp\left\{-\int_{b_{0}^{M}/b^{2}}^{M} \frac{dq^{2}}{q^{2}} \frac{\alpha_{s}(q)}{2\pi} \mathbf{r}^{(1)}\right\}$$

We could do something similar for Γ⁽¹⁾ and absorb it in B⁽¹⁾, however we would generate wrong (B⁽¹⁾)² terms (already at NNLO) that can be corrected with a modified A⁽²⁾.
 We did not follow this approach as using a 'wrong' A⁽²⁾ might potentially affect the shower accuracy

$$d\sigma^{(\text{sing})} \sim d\sigma_{c\bar{c}}^{(0)} \times \exp\left[-S_{c}'(b)\right] \times \left[\text{Tr}(\mathbf{H}\Delta_{\mathbf{NLL}})C_{1}C_{2}\right]_{c\bar{c};a_{1}a_{2}} \times f_{a_{1}}f_{a_{2}}$$

$$S' = \int_{b_{0}/b}^{M^{2}} \frac{dq^{2}}{q^{2}} \left[A(\alpha_{s}(q))\log\frac{M^{2}}{q^{2}} + B'(\alpha_{s}(q))\right] \qquad \text{Tr}(\mathbf{H}\Delta_{\mathbf{NLL}}) \sim \left\langle \mathcal{M} \middle| \Delta_{\mathbf{NLL}} \middle| \mathcal{M} \right\rangle$$

$$\Delta_{\mathbf{NLL}} \sim \exp\left\{-\int_{b_{0}^{2}/b^{2}}^{M} \frac{dq^{2}}{q^{2}}\frac{\alpha_{s}(q)}{2\pi} \mathbf{\Gamma}^{(1)}\right\}^{\dagger} \mathbf{D}(\alpha_{s}(b_{0}/b),\phi) \exp\left\{-\int_{b_{0}^{2}/b^{2}}^{M} \frac{dq^{2}}{q^{2}}\frac{\alpha_{s}(q)}{2\pi} \mathbf{\Gamma}^{(1)}\right\}$$

• Now we do the following approximation:

• It can be shown, by performing the F.O. expansion, that this mistake can also be absorbed (up to NNLO) with an additional redefinition of B⁽²⁾

$$B^{\prime(2)} \to B^{\prime\prime(2)} = B^{\prime(2)} + \frac{1}{|\mathcal{M}^{(0)}|^2} \Big\{ \langle \mathcal{M}^{(1)} | \mathbf{\Gamma}^{(1)} + \mathbf{\Gamma}^{(1)\dagger} | \mathcal{M}^{(0)} \rangle + \text{c.c.} \\ - \frac{\langle \mathcal{M}^{(0)} | \mathbf{\Gamma}^{(1)} + \mathbf{\Gamma}^{(1)\dagger} | \mathcal{M}^{(0)} \rangle}{|\mathcal{M}^{(0)}|^2} \times \left(\langle \mathcal{M}^{(1)} | \mathcal{M}^{(0)} \rangle + \text{c.c.} \right) \Big\}$$

- Finally we have **D**, which I overlooked for the moment
- We will consider the azimuthally averaged case:

 \blacktriangleright NNLO contribution from **D**⁽²⁾ vanishes upon azimuthal average

Contribution from D⁽¹⁾ starts at NNLO with a constant term coming from the interference with collinear splittings

 $[\operatorname{Tr}(\mathbf{HD})C_1C_2]^{\phi} \sim [HC_1C_2]^{\phi} + \alpha_s^2 \langle \mathcal{M}^{(0)} | \mathbf{D}^{(1)} \times G^{(1)} | \mathcal{M}^{(0)} \rangle^{\phi}$

New term easily taken into account in MiNNLO method

We arrived therefore to the desired expression keeping NNLO accuracy!

Computed by diagonalizing $\Gamma^{(1)}$ — Sum of complex exponentials

$$d\sigma^{(\text{sing})} \sim d\sigma^{(0)}_{c\bar{c}} \exp\left[-S_c''(b)\right] \left\langle \mathcal{M}^{(0)} \right| \exp\left[\int \frac{dq^2}{q^2} \frac{\alpha_s(q)}{2\pi} (\mathbf{\Gamma}^{(1)} + \mathbf{\Gamma}^{(1)\dagger})\right] \left| \mathcal{M}^{(0)} \right\rangle \left[\text{Tr}(\mathbf{H}\,\mathbf{D})C_1C_2\right]_{c\bar{c};a_1a_2}^{\phi} f_{a_1}f_{a_2}$$

Of the form
$$\sum_{i} \exp \left[-S(B \to B_i)\right]$$

More precisely, each term is an 'usual' Sudakov form factor with an effective (complex) value of $B^{(1)}$ and $B^{(2)}$

Factorization formula was the starting point for color-singlet MiNNLO

Now we have a sum of colorless-final-state-like factorization formulas

Follow MiNNLO color-singlet derivation for each of them and arrive to MiNNLO for $\ensuremath{t\bar{t}}$

- Method implemented in POWHEG-BOX-V2, code publicly available
- First ever NNLO+PS for a colored final state in hadronic collisions