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LHC: future prospects

@ The LHC aims at its current statistics

@ More precise measurements e.g. in the Higgs sector: success of the Standard Model or
hints of new physics
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LHC: future prospects

@ The LHC aims at its current statistics

@ More precise measurements e.g. in the Higgs sector: success of the Standard Model or
hints of new physics

@ This also requires accurate theoretical predictions ...

and a connection between theory & experiment! )
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Shower Monte Carlo Generators and Parton Showers

Shower Monte Carlo generators describe complex collider events, which are characterized by a
large number of particles. ‘ Parton Showers ‘ (PS) are the core of SMC. They evolve the

hard system | from a hard scale Q ~ 100 — 1000 GeV to hadronic scales A ~ 1 GeV, adding

soffer and softer partons (quarks and gluons), which are later-on converted into ,

Hard
(JJ Scattering 32
Q ~ 100GeV]|
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Dipole Showers in a nutshell

@ Parton showers describe the energy degradation of fast-moving partons via softer and
softer emissions

@ Dipole showers are the most
popular PS: available in Pythia8,

colour structure <:\ Herwig?7, Sherpa?2
= < e Each dipole emits a parton
independently
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Dipole Showers in a nutshell

@ Parton showers describe the energy degradation of fast-moving partons via softer and
softer emissions
@ Dipole showers are the most
popular PS: available in Pythia8,

colour structure <:\ Herwig?7, Sherpa?2
= < e Each dipole emits a parton
independently

@ Momentum conservation is as local as possible: the dipole
leg closer in angle in the dipole frame to the emitted o
parton takes the transverse momentum recoil.
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Dipole Showers in a nutshell

@ Parton showers describe the energy degradation of fast-moving partons via softer and
softer emissions

@ Dipole showers are the most
popular PS: available in Pythia8,

colour structure <:\ Herwig?7, Sherpa?2
= < e Each dipole emits a parton
independently

@ Momentum conservation is as local as possible: the dipole
leg closer in angle in the dipole frame to the emitted o
parton takes the transverse momentum recoil.

log(k,/Q)
@ emissions are ordered in transverse momentum k;
(except Deductor, which is “virtuality” ordered)

l E}rznr;;ﬁr% @ “easy” to match/merge with F.O. calculations because
> one needs to correct only the first emissions

y=-log(tan(6/2))

NLL-accurate PanScales showers for hadron ci



Why controlling the formal accuracy of parton showers?

W-boson mass measurements [LHCb, 2109.01113]
x10°
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How fto assess the accuracy

@ Tame the PS accuracy to exploit the potential of colliders!
@ The event evolves from hard to soft energies: large logarithms appear
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How fto assess the accuracy

@ Tame the PS accuracy to exploit the potential of colliders!
@ The event evolves from hard to soft energies: large logarithms appear

Logarithmic counting fo define the accuracy! J

@ From analytic resummation
( ) =exp(Lgu ((asL )+ an(asL) +...)
~——— ———
leading log  nexf-fto-leading log

V <Qet
—~— ~—
obs large log

asL ~ 0.55 if Q =100 and v =1 GeV: NLL are O(1)!
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How fto assess the accuracy

@ Tame the PS accuracy to exploit the potential of colliders!
@ The event evolves from hard to soft energies: large logarithms appear

Logarithmic counting fo define the accuracy! J

@ From analytic resummation
( ) =exp(Lgu ((asL )+ an(asL) +...)
~——— ———
leading log  nexf-fto-leading log

V <Qet
—~— ~—
obs large log

asL ~ 0.55 if Q =100 and v =1 GeV: NLL are O(1)!

criteria for assessing NLL
@ Bcehaviour of the exact amplitudes in singular limits [Dasgupta et al., JHEP 09 (2018), 033]
@ Logarithmic resummation results [Dasgupta et al., Phys. Rev. Lett. 125 (2020) no.5, 052002]
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How fto assess the accuracy

@ Tame the PS accuracy to exploit the potential of colliders!
@ The event evolves from hard to soft energies: large logarithms appear

Logarithmic counting fo define the accuracy! J

@ From analytic resummation
( ) =exp(Lgu ((asL )+ an(asL) +...)
~——— ———
leading log  nexf-fto-leading log

V <Qet
—~— ~—
obs large log

asL ~ 0.55 if Q =100 and v =1 GeV: NLL are O(1)!

criteria for assessjggN

Also the CVolver (Platzer, Foreshaw, Holguin et al.), Deductor
(Nagy & Soper) and Alaric (S. Hoche et al.) collaborations
addressed this topic, but here I focus on PanScales

@ Behaviour of the exact a
@ Logarithmic resummatio
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Log accuracy of PS: a fixed-order study

[Dasgupta et al., arXiv:1805.09327]

@ Case of study: emission of two soft gluons, well separated in rapidity are independent

2
2!

+

ete” —qq: |dPy =

i=1

2055(]?7"1) dsz

™ ]ﬁf],

dy;

@ Lund plane= phase space available to an
emission in terms of log @Q/kr = L and y
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Log accuracy of PS: a fixed-order study

et

[Dasgupta et al., arXiv:1805.09327]

@ Case of study: emission of two soft gluons, well separated in rapidity are independent

e —qq: |dPy =

2
2!

i=1

2055(]?7"1) dsz

™ ]ﬁf],

dy

i

@ Lund plane= phase space available to an
emission in terms of log @Q/kr = L and y

@ If a second emission disturbs a first one in
an area O(L?), it is not LL!
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Log accuracy of PS: a fixed-order study

[Dasgupta et al., arXiv:1805.09327]

@ Case of study: emission of two soft gluons, well separated in rapidity are independent

2 20, (k) dler
+ - _ . _YFp s K K )
ete” —qq: |dPy = S };[1 — s dy;

@ Lund plane= phase space available to an  In(k/Q)

emission in terms of log @Q/kr = L and y 0

@ If a second emission disturbs a first one in
an area O(L?), it is not LL!

@ If the rapidity range in which a subsequent L

emission affects the first one grows linearly
with L = —log(kr,1/Q). then the shower
cannot be NLL!

0
y; = —log (tan (2>> and kr,; = fransverse mom

{'First emission;;
FL=IN(QIK,), Y, §

Lund Plane

If a subsequent emission
changes k., significantly in
an area of order L, then the
shower is expected to be at

most leading logarithmic
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Final-state dipole showers beyond LL [Dasgupta et al., arXiv:2002.11114]

@ State-of-the art dipole showers, which are LL, are ordered in transverse momentum v = Ky;

@ Momentum conservation is fully local, the parton closer in angle to k in the dipole frame
takes the transverse momentum recoil

Here the gluon
improperly
takes the recoil

First emission

e

@ Issues due to how k| is
redistributed can be
seen already from the
second emission (from
ete™ — qq)
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Final-state dipole showers beyond LL [arXiv:2002.11114]

@ Defining y in the event-frame partially improves but does not solve the issue

Here the gluon
improperly
takes the recoll

First emission
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Final-state dipole showers beyond LL [arXiv:2002.11114]

@ Defining y in the event-frame partially improves but does not solve the issue

Here the gluon

takes the recaoill,
but its momentum
does not change
at NLL

@ Butf we can choose the ordering
variable such than when the
gluon improperly recoils, |

n(k
le > k}Tg SO ( t/Q)
kra — krg — kra ~ kT1

First emission

Vi &)V (677 0<p<1
——

virtuality

@ We call this shower

q




Final-state dipole showers beyond LL [arXiv:2002.11114]

@ Defining y in the event-frame partially improves but does not solve the issue

Here the gluon
takes the recaoill,
but its momentum
does not change
at NLL

@ Butf we can choose the ordering
variable such than when the
gluon improperly recoils,
kT 1> k}T 2, SO
kT1 — kT1 _kTQ ~ kT1

First emission

In(k/Q)
y

2ok () 0<p<
N——

virtuality

@ We call this shower

q

@ To implement transverse-momentum ordered showers then one needs to redistribute the
transverse momentum recoil globally — |PanGlobal |

All the particles are boosted fo ensure full-momentum conservation. The boost mainly
affects hard particles, leaving soft ones unchanged.




Initial-state radiation in state-of-the-art Dipole showers

Initial — initial (IT)

Initial — final (IF) E

Silvia Ferrario Ra

@ In hadron collider processes, a dipole
can comprise partons in the
initial-state, which must be aligned
with the beams
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Initial-state radiation in state-of-the-art Dipole showers

Initial — initial (IT)

Initial — final (IF) E

Silvia Ferrario Ra

@ In hadron collider processes, a dipole
can comprise partons in the
initial-state, which must be aligned
with the beams
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Initial-state radiation in state-of-the-art Dipole showers

@ In hadron collider processes, a dipole

can comprise partons in the
o o = ‘ initial-state, which must be aligned
Initial — initial (IT) Initial — final (IF) with the beams
- Here the gluon
. . . 4,9, improperly
@ In IF dipoles the final-state leg recoils also for ) _takes the recoil

ISR. In DY, the Z boson recoils only after the n k/Q)
first emission! But resummation tell us low-kr
region is dominated by emissions with opposite g recoils

k1 which cancels in the sum! -
a \\ a
g

@ To remedy this Platzer and Gieseke ('09) proposed to give the p, recoil to the incoming
partons and then boost to realign it with the beams (option available in Dire, Hoche, Prestel
'15): this renders DY “not worse” than the case with partons only in the final state (left plot)
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Two-emission contours for state-of-the-art dipole showers

What happens to the first gluon and to the Z boson fransverse momentum after a second
emission is added for state-of-the art dipole showers?

Phase-space contour of second emission

In ki/Q

A

van Beekveld, SFR, Salam, Soto-Ontoso, Soyez, Verheyen, [arXiv:2205.02237]




Two-emission contours for state-of-the-art dipole showers

What happens to the first gluon and to the Z boson fransverse momentum after a second
emission is added for state-of-the art dipole showers?

Phase-space contour of second emission Dipole-k¢(local)
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van Beekveld, SFR, Salam, Soto-Ontoso, Soyez, Verheyen, [arXiv:2205.02237]
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Two-emission contours for state-of-the-art dipole showers

What happens to the first gluon and to the Z boson fransverse momentum after a second
emission is added for state-of-the art dipole showers?

Phase-space contour of second emission Dipole-k¢(local) Dipole-k¢(global)
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Two-emission contours for state-of-the-art dipole showers

W PanLocal starting point nsverse momentum after a second
em

In ki/Q

Giving transverse momentum recoil to the
incoming parton and the apply a global boost

. Dipole-k¢(global)
r seems the less worse option...
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@ Measure the rapity in the Z boson rest frame |22l £ ol St ns Siuzil
@ Ordering variable v? = /k?q¢> !
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In ki/Q

Two-emission contours for state-of-the-art dipole showers

Wl oonocal starting point - nsverse momentum after a second
em

Giving transverse momentum recoil to the
incoming parton and the apply a global boost

r seems the less worse option...

To get PanlLocal:

In k/Q

—— But watch out when you
have hard collinear ISRI!

@ Measure the rapity in the Z boson rest frame

@ Ordering variable v? = /k?q¢>

Shower p? relative to p7 = [k, 1 + ks 2|

VUl DEERVEIU, O K, DUldlll, SUT0-Uriuso, Soyez, Verheyen, [arXiv:2205.02237]




PanlLocal for hadron collisions

We use v ~ ke~ 1/2 for soft-collinear emissions (like for FSR) and restore transverse
momentum conservation for very collinear emissions.

2 _ |k 2 _ g2
ISR: ‘L‘t,shower - FSR: ‘L”t,shovver - |kL|
(1 + ap ) 1+ 1+8
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PanGlobal for hadron collisions

@ To have B =0 (i.e. k;-ordering) we cannot conserve the transverse momentum locally.

@ In the variant of PanGlobal, the whole final-state is boosted to absorbe the

transverse momentum of the emission, and the hardest partons (typically the original qg pair)
takes the recoil;
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PanGlobal for hadron collisions

@ To have 3 =0 (i.e. k;-ordering) we cannot conserve the transverse momentum locally.

@ In the variant of PanGlobal, the whole final-state is boosted to absorbe the

transverse momentum of the emission, and the hardest partons (typically the original qg pair)
takes the recoil;

@ For , boosting the whole final-state is dangerous, because we can have very

energetic partons produced from the backward evolution of the incoming partons that should
not be affected by emissions well-separated in rapidity (interesting solution by Nagy, Soper
‘09, that however works only for 8 > 0)

Colour singlet

The gluon must be insensitive to emissions off the
incoming parton in the opposite hemisphere

@ We boost only the Z boson to absorb the recoil (and rescale the beams to ensure
momentum conservation)
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Two-emission contours for PanGlobal

With this map, we can build an NLL shower ordered with several ordering scales
PanGlobal(Bps=0)
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All-order tests: general strategy

@ We want to compare against the analytic NLL result

3(0 < eL) =exp (Lgu (asL) + gn(asL) + asga (asL) + .. .)

van Beekveld, SFR, Hamilton, Salam, Soto-Ontoso, Soyez, Verheyen, [arXiv:2207.09467]

Silvia Ferrario R Ju NLL-accurate PanScales showers for hadron collisions



All-order tests: general strategy

@ We want to compare against the analytic NLL result
Y(0 < el) = exp (Lo (s L) + gni (oo L) 4+ g (s L) + ...)

@ We want to be sure higher order corrections do not pollute our comparison: we need to

extract for at fixed value of

Pez, cumulative distribution, Dipole-k¢(local) Pez, cumulative distribution, Dipole-k¢(global) Pez, cumulative distribution, PanGlobal(Bps=0)
T T T T T T T T T T T T
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A = asInpez/Mz A = asInpez/Mz A = asInpez/Mz

van Beekveld, SFR, Hamilton, Salam, Soto-Ontoso, Soyez, Verheyen, [arXiv:2207.09467]
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All-order tests: p;z and leading jets Ad 5

Z bososon pr A®; 5 between the two leading (C/A, R = 1) jets
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Exploratory pheno wi
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@ We vary by a factor 2 the scale used fo evaluate the PDF's

— central
HF = TFHp )

xp=1/2,1,2
@ We vary by a factor 2 the scale used to evaluate ag, adding a
compensation factor for soft emissions in NLL showers

central

K
nr=orpE™ wr=1/2,1.2 au(ur) (14 e (ur)+2(1 = Oboos (ur) log s )

In the soft limit evaluated at k4

(Similar to Mrenna, Skands [1605.08352])
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Exploratory pheno with prz
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3 form 2. yz=0 @ We vary by a factor 2 the scale used to evaluate the PDF's
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Exploratory pheno with Adq,

Azimuthal correlations between the two leadind (C/A, R = 1) jets, requiring pr,1 ~ 25 GeV, pra ~ 10 GeV,
Ay > 1.5 for Drell-Yan, with yz = 0 and mz/GeV = 91

0.50
PanGlobal(Bps=0) [NLL] ——
PanGlobal(Bps=0.5) [NLL] ===
0451 PanLocal(Bps=0.5,dip.) [NLL] ——
PanLocal(Bps=0.5,ant.) [NLL] -+
040l Dipole-ke(global) [LL] -+

Dipole-k(local) [LL] ===

1/N dN/d|A1z2|
o
w
&

o
w
s

0.25F

3 n2 3n/4 n
1812]

@ For onshell Z production, the "best” LL shower is undistinguishible from the NLL, and scale
variations are much smaller than recoil scheme variations within NLL showers.




Exploratory pheno with Adq,

Azimuthal correlations between the two leadind (C/A, R = 1) jets, requiring pr,1 ~ 25 GeV, pra ~ 10 GeV,
Ay > 1.5 for Drell-Yan, with yz = 0 and mz/GeV = 91, 500, 2000
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@ For onshell Z production, the "best” LL shower is undistinguishible from the NLL, and scale
variations are much smaller than recoil scheme variations within NLL showers.

@ For very large mass M, > 500 GeV, the LL showers lead to clear distorsions wrt the NLL
ones, scale variations are smaller but of the same order of magnitude of NLL shower
differences:

NLL-accurate PanScal



Conclusions and Outlook

@ Parton Showers are employed in almost every analysis from the LHC experimential
collaborations: indispensable for collider phenomenology!

@ The accuracy of Parton Showers is very rough compared to state-of-the-art analytic
calculations, which in turn however have limited applicability (only few observables, joint
resummation very difficult, analytic hadronization models not so advanced ...)

@ We can learn from analytic resummation how to build a next-to-leading-logarithmic shower!

@ Several NLL showers for all the most relevant LHC processes are around the corner, in
particular PanScales is working hard towards having a public code usable for phenomenology
at the LHC (ongoing work on matching, masses, processes with generic jets and more).

@ Long-standing issue: shower uncertainties. Having several and not just 1 NLL shower will help.

Silvia Ferrario R Ju NLL-accurate PanScales showers for hadron collisions
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All-order tests: global event shapes

We extended the calculation of
NLL accuracy tests - pp -Z subleading-colour corrections to ISR
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All-order tests: non-global observables
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@ Non-global QCD observables are characterised
by a sensitivity to the full angular distribution of
soft radiation emitted coherently in hard
scattering processes.

@ Dipole showers can also describe non-global
oservables, such as S, o (=scalar sum of ;) for
emissions in a rapidity slice
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Superleading logs in dip showers [arXiv:2002.11114, Dagupta et al. '20]

log(X) =Lgu(asL) + gn(as L) + asgan (s L) 4+ ... = Z(aSL)i [Q,LLL + cine + conl L4 ]
=1
If we ignore the running of as, bo = 0 — g1 = 0, so at order «f there cannot be more than n powers of L.
If we find terms o2 L with m > n + 1 (or n + 2 if we include the running) those are superleading
logarithms, which should not present (here is e™e™ — g at leading colour)

[log(Zes) — log(Tnw)] op 0 the shower is NLL

lim = = ¢ const the shower is not NLL
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cL? withi>1 there are superleading logs
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