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Shape variables and QCD

Shape variables in e+e− annihilation are the simplest contest
where we can study perturbative QCD.

For example, thrust:

T = max
~t

∑
|~pi · ~t|∑
|~pi |

equals 1 for two narrow back-to-back jets, and 2/3 < T < 1 for
three narrow jet.
Thus in the region 2/3 < T < 1 the thrust distribution is
proportional to αS , and can be used for its determination.
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On the other hand, the thrust distribution is sensitive to
non-perturbative hadronization effects.

For example, the emission of a soft hadron with momentum
500 MeV, perpendicular to the thrust direction, affects the thrust
by an amount 0.5/91 ≈ 0.005 on the Z peak. The average value
of 1− T is of order αS ≈ 0.1%, so this shift in T can affect the
determination of αS by an amount of the order of 5%.

In practice non-perturbative corrections can reach the 10% level,
and can affect at the same level the extracted value of αS .
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αs determinations (PDG)

Determination of αS from the first
seven rows of the jets & shapes
cathegory (highlighted in green) use
Monte Carlo models to correct for
non-perturbative effects.

The following three lines (Ab-
bate, Gehrmann, Hoang) are based
upon analytic modeling of non-
perturbative effects.
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Status

I The use of Monte Carlo modeling for hadronization
corrections is not totally satisfying, since it lacks a sound
theoretical basis.

I Analytic models seem to favour a too low value of αS as
compared to the world average and to the precise lattice
determination.

I No bridge between MC and analytic models

I It is disturbing that we do not fully understand the role of
non-perturbative effects at least in the simplest context where
they can be studied.

I Understanding non-perturbative effects can have important
consequences also for precision physics at hadron colliders,
where linear power corrections can play an important role.
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There are two broad classes of analytic methods:

I those based upon the so called “Dispersive approach”, Based
upon work of Dokshitzer, Webber, Marchesini, Salam and
others. It is based upon the computation of the emission of a
very soft gluon, with an associated non-perturbative coupling.
The reference to Gehrmann in the previous slide refers to this
method.

I Those based upon factorization, that separates the QCD
calculation into a perturbative and non-perturbative
contribution (a so called Shape Function), based upon work of
Collins, Soper, Korchemsky, Sterman, and followed by a vast
literature (Hoang, Stuart, Thaler, Mateu, Bauer, Schwartz
and many others) using SCET. The references to Abbate and
Hoang refer to this method.

These methods have however a common feature: the
non-perturbative correction is computed in the two-jet limit, and
then it is extrapolated to the three-jet region, where the
measurement is performed.
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Recent progress

There have been recently new findings regarding the structure of linear
power corrections in collider observables:

I In ref. Eur.Phys.J.C 81 (2021), (Luisoni, Monni, Salam) it was
shown that linear power corrections to the C parameter in the 3-jet
symmetric limit are about 1/2 of those in the two jet limit.

I In ref. JHEP 01 (2022) 093, (Caola, Ferrario-Ravasio, Limatola,
Melnikov, P.N.) it was demonstrated that linear power corrections
are absent in sufficiently inclusive observables, in a variety of
processes, in a model theory (large nf QCD) that shares some
properties with the full theory. These findings confirmed previous
results obtained at the numerical level JHEP 06 (2021) 018,
(Ferrario-Ravasio,Limatola,P.N.).

I The same findings opened the possibility to compute linear power
corrections to shape variables in the 3-jet configuration
arXiv:2204.02247, (Caola,Ferrario-Ravasio,Limatola,Melnikov,
Ozcelik,P.N.)
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The results of Luisoni, Monni, Salam are based upon the so called
“dispersive approach”, where one assumes that the strong coupling
at low energy can be given by an effective coupling

The results of Caola et al. and Ferrario-Ravasio et al. are obtained
from the study of IR renormalons. (These, in turn, can be shown
to be related to calculations with a massive gluon: the presence of
effects linear in the mass signals the presence of linearly suppressed
power corrections due to renormalons.)

The two approaches are deeply related.
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How does it work

Assume that radiation kinematics, p̃, k (k is the soft gluon
momentum) can be given as a function of a Born kinematics p and
of k, p̃ = p̃(p, k), and this function in linear in the components of
k for small k . We found (Caola etal.) that the integral of the
amplitude at fixed p∫

[dk]M(p̃(p, k), k) [1, k · r ]

for a gluon with mass λ does not have any terms linear in λ for
small λ. Then, the cumulant of a shape variable is∫

dM(p̃, k)Θ(v − V (p̃, k)) =

∫
dM(p̃, k)δ(v − V (p)) [V (p)− V (p̃, k)]

+

∫
dM(p̃, k)Θ(v − V (p))

The second line does not lead to linear λ terms. But now the
square bracket on the first line suppresses the amplitude, so, in
order to get a linear term, we only need to consider the
soft-divergent part of the amplitude. 9 / 31



How does it work

I In the two-parton case, the Born kinematics is fixed, so V (p) is
fixed. So, the previous argument works with no need of further
assumptions.

I C (p) in the 3-jet symmetric limit depends only weakly on p. Thus,
it does not matter what mapping one uses, C (p) is essentially fixed
(Luisoni et al.)

I In the generic case, it is essential to use the fact demonstrated by
Caola et al., that in suitable recoil schemes recoil effects cannot
generate linear power corrections
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Non-perturbative corrections can be parametrized by a shift in the
perturbative cumulant distribution:

Σ(s + HNPζ(s))− Σ(s) ≈ dσ

ds
HNPζ(s), Σ(s) =

∫
dσ(Φ)θ(s − s(Φ))

and HNP ≈ Λ/Q is a non-perturbative parameter that is fully
calculable in the large nf approximation but must be fitted to data
in real QCD.
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The dot in the plots represents the constant value that was used in
earlier studies. Notice that the value of ζ at the symmetric point is
about one/half of the value at c = 0, consistent with Luisoni etal.
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(G.Zanderighi, P.N.) In some cases the ζ function is negative!
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Rapid variations near v = 0

Near v = 0, the Born amplitude is dominated by the soft-collinear region.

radiation =
CA

2
Mq̄g +

CA

2
Mqg +

(
CF −

CA

2

)
Mqq̄

but Mqg ≈ 0, Mq̄g ≈ Mqq̄, so the total is ≈ CFMqq̄.

Our ζ(v) functions, for v → 0 MUST approach the 2-jet limit
value; but up to single logs!, i.e. terms of relative order 1/| log(v)|.
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Insist on v → 0 (quadruple precision, log scale histogram).
Two-jet limit reached, but subleading logs are extremely important!
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Implications

I There is a clear indication that the non-perturbative
correction in the two jet limit cannot be safely extrapolated in
the region where αS is fitted.

I Indication that the two-jet limit is more tricky than thought
before: subleading logs can be extremely important.

I It is likely that this is not the whole story, and more needs to
be understood before these findings can be safely used.
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Does it fit data?

It is interesting to ask whether current data favours the newly
computed power corrections. (Zanderighi,P.N., in preparation)
In the following I will illustrate preliminary results obtained by
fitting ALEPH data.
The non-perturbative shift for C and t are available from
arXiv:2204.02247, Caola et al..
In Zanderighi,P.N. we also computed it for the y3 in the Durham
scheme, the Heavy jet mass M2

h and the heavy-light mass
difference M2

h −M2
l and the broadening of the wide jet BW .

We computed the shape variables at NNLO, and implemented the
power correction. No other ingredient (i.e. resummation) was
included. On the other hand, the fit ranged were chosen far from
the two jet region and before the 3-parton kinematic limit.
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Mass corrections

I Shape variables are defined for massless partons, and the
analytic models refer to the “massless” definition.

I Final state hadrons are massive; so the definition of the shape
variables must be extended to massive objects. This leads to
ambiguities in the definition.

I This problem has been extensively studied in JHEP 05 (2001)
061, (Salam, Wicke). Three mass schemes where proposed:
I the p scheme, where the energy of a particle is set equal to the

modulus of the 3-momentum;
I the E scheme, where the modulus of the momentum is set

equal to the energy;
I the D scheme (“Decay scheme”), where massive hadrons are

decayed isotropically into a pair of fictitious massless particles
before the shape variable is computed.
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I The perturbative theoretical errors were estimated with a
3-point scale variation µR/Q = 0.25, 0.5, 1. An estimate of
the error on the non-perturbative component was also
included and added in quadrature.

I Diagonal terms of the covariant matrix were computed by
summing in quadrature the systematic statistical and
theoretical errors. The off-diagonal terms were computed as
Eij = min(δσ2

syst,i , δσ
2
syst,j) (the so called minimal-overlap

model).

I We adopted the E scheme as our default treatment of hadron
masses. We computed the associated bin migration matrix
using Pythia8. Using Herwig7 we obtain compatible results
with a slightly worse χ2.
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PRELIMINARY RESULTS

Simultaneous fit to C , t and y3, both for our newly computed ζ(v), and,

for comparison, with ζ(v)→ ζ(0) (traditional method for the

computation of power corrections).

(we excluded variables with “bizarre” behaviour near the 2-jet limit)
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PRELIMINARY RESULTS

Different correlations computation, using correlation data not
publicly available (thanks to Hasko Stenzel).
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Quality of the fit for C , τ and y3, using the new calculation of the
non-perturbative effect (i.e. the full ζ(v) dependence.)
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Prediction for M2
H , M2

D and BW using the values of αS and α0

obtained by fitting C , τ and y3.
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Prediction for M2
H , M2

D and BW using the values of αS and α0

obtained by fitting C , τ and y3.
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Quality of the fit for C , τ and y3, obtained setting ζ(v) = ζ(0).

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8
1
/σ

 d
σ

/d
C

Const. ζ
no NP corr.

data

0.95
1

1.1

 0.2  0.25  0.3  0.35  0.4  0.45  0.5  0.55  0.6

d
a
ta

/t
h
e

o
ry

C

 0

 0.5

 1

 1.5

 2

 2.5

 3

1
/σ

d
σ

/d
τ

Const. ζ
no NP corr.

data

0.95
1

1.1

 0.05  0.1  0.15  0.2  0.25  0.3

d
a
ta

/t
h

e
o

ry

τ

 0

 0.5

 1

 1.5

 2

 2.5

1
/σ

 d
σ

/d
y

3

Const. ζ
no NP corr.

data

0.95

1

1.05

 0.05  0.1  0.15  0.2  0.25  0.3

d
a
ta

/t
h

e
o

ry

y3

24 / 31



Prediction for M2
H , M2

D and BW using the fitted values of αS and
α0 obtained by fitting C , τ and y3.
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Prediction for M2
H , M2

D and BW using the fitted values of αS and
α0 obtained by fitting C , τ and y3.
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I The heavy jet mass, mass difference and broadening are well
fitted far enough away from the two jet region with the newly
computed ζ functions.

I On the other hand, it seems impossible to fit them using a
constant, two-jet limit ζ.
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Variation αs α0 χ2 χ2/Ndeg

Default setup 0.1182 0.64 7.3 0.17
Renormalization scale Q/4 0.1202 0.60 9.1 0.21

Renormalization scale Q 0.1184 0.68 8.7 0.20

NP scheme (B) 0.1198 0.77 7.0 0.16
NP scheme (C) 0.1206 0.80 5.4 0.12
NP scheme (D) 0.1194 0.66 5.8 0.13

P-scheme 0.1158 0.62 10.7 0.24
D-scheme 0.1198 0.79 5.7 0.13
no scheme 0.1176 0.58 9.2 0.21

No heavy to light correction 0.1186 0.67 6.8 0.16

Herwig 6 0.1180 0.59 15.9 0.36
Herwig 7 0.1180 0.60 12.0 0.27

Ranges (2) 0.1174 0.62 12.7 0.23
Ranges (3) 0.1188 0.69 2.7 0.08

Replica method (around average) 0.1192 0.61 7.0 0.16
Replica method (around default) 0.1192 0.61 7.0 0.16

y3 clustered 0.1174 0.66 8.2 0.19

We have considered several variations of the methods. They lead substantially

to the same picture, with a spread in the value of αS of the order of 2%.

Hadron mass effects are particularly important ...
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Conclusions?

I New results cast doubts on the “traditional” implementation
of power corrections. For observables like the heavy jet mass
and jet mass difference, these doubts also concern the use of
the traditional method in the resummed part of the cross
section.

I Our “close your eyes and do it” approach turned into a mixed
success. The new result seems to be favoured by data when
staying far away from the two-jet region, but we are unable to
obtain good fits in a reasonably extended three-jet range for
all variables considered.

I It is customary, in e+e− shape variable studies, to include
resummation effects in the whole 3-jet range, and sometimes
also beyond. These effects increase the cross section also in
the 3-jet region, and lead to a reduction in the extracted value
of αS . In our N3LO fit we do not seem to need this increase
to get values of αS near the workd average.
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I The interplay of the new results with soft gluon resummation
needs further investigation. Our results are based upon the
assumption that effects associated with higher order radiation
remain effectively of higher orders, i.e. that power corrections
to real and virtual soft gluon corrections cancel among each
other. One can argue that such cancellation must occour
between the virtual correction to qq̄ production and the qq̄g
cross section when g becomes unresolved. One can hope that
the same happens in the qq̄g production.
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The two-jet limit case

We can guess that the correction of order λ, up to orders αS , has
the form

dσ

dv

∣∣∣∣
λ

= Nλ

[
δ′(v)ζc + (δ′(v)V1 + δ(v)V2)αS +

d

dv

(
dσqq̄g
dv

ζ(v)

)]
where we assume some regularization for the last term. But the
whole thing must integrate to 0 (no λ term in total cross section).
Thus, divergences in the middle and last term must cancel, and the
αS correction must be a hard correction.
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