MC@NLO- Δ

and statistical fluctuations at fixed order

Rikkert Frederix
Lund University

Outline

- NLO+PS: MC@NLO- Δ
- Together with S. Frixione, S. Prestel and P. Torrielli, $2002.12716[$ [hep-ph] and with Pythia8 support from L. Gellersen and C. Preuss
- Applications for fixed order

MC@NLO- Δ

The cost of negative weights

- Main disadvantage of MC@NLO is the (large) fraction of negatively weighted events
- IR-safe observables will be positive in all bins (up to statistical fluctuations)
- Efficiency and relative cost:

$$
\begin{aligned}
& \varepsilon(f)=1-2 f \\
& c(f)=\frac{1+C_{ \pm} \sqrt{1-\varepsilon(f)^{2}}}{\varepsilon(f)^{2}}
\end{aligned}
$$

- Not only is there a cancelation between negative and positive events, the remaining distributions still have the statistical uncertainties of the original (larger) event files

MC@NLO anatomy

- Generating functional for MC@NLO

$$
\begin{aligned}
& \mathcal{F}_{\mathrm{MC@NLO}}=\mathcal{F}_{\mathrm{MC}}\left(\mathcal{K}^{(\mathbb{H})}\right) d \sigma^{(\mathbb{H})}+\mathcal{F}_{\mathrm{MC}}\left(\mathcal{K}^{(\mathbb{S})}\right) d \sigma^{(\mathbb{S})} \\
& \begin{array}{l}
\mathrm{MC}(\text { Shower) functional, starting } \\
\text { from (} \mathrm{n}+1 \text {)-body kinematics }
\end{array} \\
& \begin{array}{l}
\mathrm{MC} \text { (Shower) functional, starting } \\
\text { from n-body kinematics }
\end{array}
\end{aligned}
$$

with

$$
\begin{aligned}
\text { O-1 }
\end{aligned}
$$

- Three sources of negative weights (with some overlap in the first two)
N. $1 \mathbb{H}$ events with $P\left(\mathcal{K}^{(\mathbb{H})}\right) \ll M_{H} ;$

N. $2 \mathbb{H}$ events with $P\left(\mathcal{K}^{(\mathbb{H})}\right) \sim M_{H}$;
the real-emission corrections
N. $3 \mathbb{S}$ events.

n-body kinematics, but support in
n+1-body phase space

Types N. 2 and N. 3

N. $1 \mathbb{H}$ events with $P\left(\mathcal{K}^{(\mathbb{H})}\right) \ll M_{H}$;
N. $2 \mathbb{H}$ events with $P\left(\mathcal{K}^{(\mathbb{H})}\right) \sim M_{H}$;
N. $3 \mathbb{S}$ events.

$$
\begin{aligned}
& \mathcal{F}_{\mathrm{MC} @ \mathrm{NLO}}=\mathcal{F}_{\mathrm{MC}}\left(\mathcal{K}^{(\mathbb{H})}\right) d \sigma^{(\mathbb{H})}+\mathcal{F}_{\mathrm{MC}}\left(\mathcal{K}^{(\mathbb{S})}\right) d \sigma^{(\mathbb{S})} \\
& d \sigma^{(\mathbb{H})}=d \sigma^{(\mathrm{NLO}, E)}-d \sigma^{(\mathrm{MC})} \\
& d \sigma^{(\mathbb{S})}=d \sigma^{(\mathrm{MC})}+\sum_{\alpha=S, C, S C} d \sigma^{(\mathrm{NLO}, \alpha)}
\end{aligned}
$$

- Reduction of negative events of type N. 2
- The shower is radiating into the hard region; fine for LO, but at NLO one emission is explicitly included through real-emission matrix elements \Rightarrow prefer smaller shower starting scales
- Reduction of negative events of type N. 3
- These are n-body contributions, but have support in ($\mathrm{n}+1$)-body phase-space
\Rightarrow sample +1-phase-space more often for a given n-body point
- Identical to "folding" in the POWHEG codes

MC@NLO- Δ

N. $1 \mathbb{H}$ events with $P\left(\mathcal{K}^{(\mathbb{H})}\right) \ll M_{H}$;
N. $2 \mathbb{H}$ events with $P\left(\mathcal{K}^{(\mathbb{H})}\right) \sim M_{H}$;

$$
\begin{aligned}
& \mathcal{F}_{\mathrm{MC@NLO}}=\mathcal{F}_{\mathrm{MC}}\left(\mathcal{K}^{(\mathbb{H})}\right) d \sigma^{(\mathbb{H})}+\mathcal{F}_{\mathrm{MC}}\left(\mathcal{K}^{(\mathbb{S})}\right) d \sigma^{(\mathrm{S})} \\
& d \sigma^{(\mathbb{H})}=d \sigma^{(\mathrm{NLO}, E)}-d \sigma^{(\mathrm{MC})} \\
& d \sigma^{(\mathrm{S})}=d \sigma^{(\mathrm{MC})}+\sum_{\alpha=S, C, S C} d \sigma^{(\mathrm{NLO}, \alpha)}
\end{aligned}
$$

- Reduction of negative events of type N. 1
- Modify the MC@NLO procedure:

$$
\begin{aligned}
& \mathcal{F}_{\mathrm{MC} @ \mathrm{NLO}-\Delta}=\mathcal{F}_{\mathrm{MC}}\left(\mathcal{K}^{(\mathbb{H})}\right) d \sigma^{(\Delta, \mathrm{Hi})}+\mathcal{F}_{\mathrm{MC}}\left(\mathcal{K}^{(\mathrm{S})}\right) d \sigma^{(\Delta, \mathrm{S})} \\
& d \sigma^{(\Delta, \mathrm{H})}=\left(d \sigma^{(\mathrm{NLO}, E)}-d \sigma^{(\mathrm{MC})}\right) \Delta, \\
& d \sigma^{(\Delta, \mathrm{S})}=d \sigma^{\mathrm{MC})} \Delta+\sum_{\alpha=S, C, S C} d \sigma^{(\mathrm{NLO}, \alpha)}+d \sigma^{(\mathrm{NLO}, E)}(1-\Delta)
\end{aligned}
$$

- with

$\Delta \longrightarrow 0$ in the soft/collinear limits
$\Delta \longrightarrow 1$ in the hard regions
\Rightarrow use shower no-emission probability (between hard scale and scale of the emission)

NLO accuracy

- The formal expansion of the no-emission probability is $\Delta=1+\mathcal{O}\left(\alpha_{S}\right)$
- Furthermore, in the soft/collinear limits the logarithms are similar to the ones that are generated by the shower
\Rightarrow From this one can conclude that accuracy is the same as with the default MC@NLO method
- However, beyond NLO contributions can be very much different: MC@NLO- Δ is effectively a new matching procedure

Implementation

- Run-time interface between MG5_aMC and Pythia8
- MG5_aMC generates a phase-space points, all the relevant matrix elements and MC counter terms
- It calls Pythia8 to determine the relevant emission scales for each dipole in the S -events to obtain the H -event
- For fast evaluation, the Pythia8 Sudakov factors have been tabulated (2D grids (dipole mass and scale); one for each parton flavour; one for each dipole type (II, IF, FI, FF))
- No emission probabilities included by MG5_aMC
- Major complication:
- emission scale is different for each dipole
- when showering events requires a different starting scale for each dipole

MG5_aMC public version?

- Published MC@NLO- Δ in 2002.12716 [hep-ph], but code not yet public...
- After publication, we found
- some bugs...
- a better treatment of events that are in the dead zone
- some improvements in the shower scale assignments
- compatibility with Pythia8.3 (thanks to Leif Gellersen and Christian Preuss!)
- Code will go public soon!

Reduction of negative weights

- Fraction of negative weights and relative cost (assuming no correlations)

Selected results

- Transverse momentum of the Born system
- Differences between default and Δ are sizeable, but reasonable
- Folding has no effect (apart from increased statistics), as it should be

Summary, part 1

- MC@NLO- Δ reduces the number of negative weights by a significant amount
- New matching procedure; results differ from default MC@NLO—within the matching systematics
- Run-time interface between MG5_aMC and Pythia8
- With Δ enabled, CPU time to generate LHEF increases by a factor ~ 3
- $4 x$ folding increases the run time also by a factor ~ 3
- 16x folding about a factor $\sim 3^{2}$
\Rightarrow reduction of negative weights due to Δ and folding typically not worth it from a CPU point of view, except when there is more overhead than simply showering the events (detector simulation, storage space, etc.)
- Outlook: multi-jet FxFx merging within MC@NLO- Δ is the next step

Reducing statistical fluctuations at Fixed Order

Statistical fluctuations at fixed order

- A major source of statistical fluctuations in fixed order differential distributions are the 'misbinning' effects
- At NLO: the real-emission and IR-subtraction terms can end up in different bins
- This depends on the mapping between the n and $(\mathrm{n}+1)$-body phasespace

Δ for Fixed order

- NLO diff. cross section (schematically)

$$
\begin{aligned}
& \frac{d \sigma^{\mathrm{NLO}}}{d \mathcal{O}}=\int(B+V+I) \mathcal{O}\left(\Phi_{n}\right) d \Phi_{n} \\
& +\int\left(R \mathcal{O}\left(\Phi_{n+1}\right)-S \mathcal{O}\left(\Phi_{n}\right)\right) d \Phi_{n+1}
\end{aligned}
$$

- Introduce Δ factor:

$$
\begin{aligned}
& \frac{d \sigma^{\mathrm{NLO}}}{d \mathcal{O}}= \int(B+V+I) \mathcal{O}\left(\Phi_{n}\right) d \Phi_{n} \\
&+\int\left[\left(R \mathcal{O}\left(\Phi_{n+1}\right)-R \mathcal{O}\left(\Phi_{n}\right)\right) \Delta\right. \\
&\left.+R \mathcal{O}\left(\Phi_{n}\right)-S \mathcal{O}\left(\Phi_{n}\right)\right] d \Phi_{n+1}
\end{aligned}
$$

Alternatively:

$$
\begin{aligned}
& \frac{d \sigma^{\mathrm{NLO}}}{d \mathcal{O}}=\int(B+V+I) \mathcal{O}\left(\Phi_{n}\right) d \Phi_{n} \\
& +\int\left[R \mathcal{O}\left(\Phi_{n+1}\right)-S \mathcal{O}\left(\Phi_{n+1}\right)\right. \\
& \quad \\
& \quad+\left(S \mathcal{O}\left(\Phi_{n+1}\right)-S \mathcal{O}\left(\Phi_{n}\right)\right) \Delta d \Phi_{n+1}
\end{aligned}
$$

- Δ does not need to be the Pythia8 no-emission probability: it can be a simple LL Sudakov factor between the hard scale and the scale of the emission
\Rightarrow NLO accuracy is conserved

$\mathrm{p}_{\mathrm{T}}(4$ lepton $)$

- Same random seed: exactly the same PS points
- Inclusion of Δ changes the 4-lepton spectrum at small transverse momenta
- However, this is the region where you cannot trust FO perturbation theory
- Two versions (including Δ for real and subtraction, respectively) give identical results

Hardest lepton and invariant mass

- Of course, no effect in 4-lepton invariant mass
- Significant reduction of statistical fluctuations in $\mathrm{p}_{\mathrm{T}}\left(\mathrm{l}_{1}\right)$; compatible with the default

Z-bosons (ordered in p_{T})

- Again, large reduction in statistical fluctuations
- Compatible within scale uncertainties; expect at low $p_{T}(Z)$, where FO perturbation theory cannot be trusted

Summary, part 2

- Adding Δ is a simple improvement to fixed order computations that can significantly reduce statistical fluctuations in diff. distributions
- Inclusive rates are not affected \Rightarrow Observables conserved in the mapping are not affected
- Other observables see some changes, but only when sensitive to IR region, where fixed order perturbation theory does not work \Rightarrow Statistical fluctuations reduced by factor $\sim 2-3$ at no additional cost. Severe misbinning is gone
- Worth investigating for other processes and at NNLO

